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Trade-off: Revenue vs Rating

Customers are highly influenced by (negative) information

(Negative) reviews influence customers purchasing products

(Negative) price/quality perception influences customers
writing reviews
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Goal

Goal: Maximize long-term revenue

Optimizing revenue might lead to worse ratings and
suboptimal revenue
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Model

Clients consider the hotel, depending on the reviews R
(λi (R))

Depending on the products S that are offered, clients make a
purchase (Pj(R, S))

A purchase leads to:

revenue rj
positive review probability qpj
negative review probability qnj

purchased products can be cancelled
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Modelling demand and cancellations as a function of
reviews

Qp
i = # positive reviews from day i

Qn
i = # negative reviews from day i

α ∈ (0, 1) discounting parameters

M = # past arrival days

Adjusted reviews:

Q̃p
k :=

k−1∑
i=k−M

αk−i−1Qp
i , Q̃n

k :=
k−1∑

i=k−M
αk−i−1Qn

i .

Rating:

ρ :=
Q̃p

k

Q̃p
k + Q̃n

k

.
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Modelling demand and cancellations as a function of
reviews

Demand and cancellation parameters:

λi (R) := λ̄i exp
(
βλpρ+ βλn (1− ρ)

)
,

γi (R) := γ̄i exp
(
βγpρ+ βγn (1− ρ)

)
.
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Multiple arrival day example

rating 0.5 0.5 0.5 0.6 0.6 0.6

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5

arrival day 3 S3
3 S3

2 S3
1

arrival day 2 S2
3 S2

2 S2
1 ∗

arrival day 1 S1
3 S1

2 S1
1 ∗
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Multiple arrival day dynamics

R i (S1, . . . ,S i ) revenue from arrival day i

S i = {ST , . . . ,S1} strategy for arrival day i

Objectives:

φI (S) =
I∑

i=1

R i
(
S1, . . . ,S i

)
,

φ∞(S) =
∞∑
i=1

ai−1R i
(
S1, . . . ,S i

)
.
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Problem

State space size: N I

Action space size: NT

Intractable due to curse of dimensionality

Solution: Equilibrium Solutions

Keep expected rating constant, equal to a target rating ρ∗

Now R i depends solely on S i

Each arrival day can be solved separately
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One arrival day Bellman equation

V π
i ,t(x) =

∑
S⊂N

π(x , t, S)

{
λ
∑
j∈S

Pj(S)
[
r ij −∆H i

j (t) + V π
i ,t−1(x + 1)

]
+ γxV π

i ,t−1(x − 1)

+

1− λ
∑
j∈S

Pj(S)− γx

V π
i ,t−1(x)

}
.

Three objectives:

Vπ = (V π
1 ,V

π
2 ,V

π
3 )

Scalarization:

V π
w = f (Vπ,w) = w1V

π
1 + w2V

π
2 + w3V

π
3
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Convex Coverage Set (CCS)

Every weight w has a corresponding optimal policy π and value
function V π
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Finding equilibrium solution

Policy π ∈ CCS corresponds to value vector V π

Hyperplane where rating = ρ:

H =

{
x ∈ R3

∣∣∣∣ x2
x2 − x3

= ρ

}
=
{
x ∈ R3

∣∣ x2(ρ− 1)− ρx3 = 0
}
.

Target-rating policy:

π(ρ) = arg max
π∈CCS

{
V π
1

∣∣Vπ ∈ CCS′ ∩H
}

Optimal target-rating and corresponding policy:

π(ρ∗) = arg max
π(ρ)

V
π(ρ)
1
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One instance: policy analysis

Revenue Positive reviews Negative reviews Rating ρ

0 0 0 -
7493.76 33.01 3.75 0.90

12513.99 42.88 9.28 0.82
12595.63 41.42 6.30 0.87
14252.80 42.48 9.77 0.81
15137.33 41.09 7.57 0.84
16021.48 41.67 10.38 0.80
17983.01 40.40 11.16 0.78
18693.24 39.78 10.61 0.79
19985.47 38.61 9.99 0.79
21719.66 36.79 11.74 0.76
23528.79 33.55 12.81 0.72
24686.86 26.26 12.34 0.68
25194.50 29.93 13.87 0.68
26943.83 25.33 15.07 0.63
27098.09 21.11 15.62 0.57
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Observations

1 By sacrificing revenue the rating can be increased

2 Sacrificing revenue not always increases rating

3 When revenue increases, positive reviews increase and
negative reviews decrease

4 However, increases are not strict due to the trade-off
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Scenarios

1 Large effects of demand and review probabilities

2 Large effect of demand, small effect of review probabilities

3 Small effect of demand, large effect of review probabilities

4 small effects of demand and review probabilities
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Observations

1 All scenarios show structural increase in revenue, of up to 11%

2 11.1% increase in rating leads to 5.7% increase in revenue
(similar to Ye et alii (2011)
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Implications

Tractable solution methods

Improving hotel facilities

Multiple night stays → constant target rating challenging
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