
# Revenue Management under Customer Choice Behaviour with Cancellations and Overbooking<sup>l</sup>

Dirk D. Sierag <sup>1</sup>

<sup>1</sup>Center for Mathematics and Computer Science (CWI), Amsterdam, dirk@cwi.nl

June 2014

This work is in collaboration with prof.dr. G.M Koole, prof.dr. R.D. van der Mei, dr. J.I. van der Rest, and ofdr. B. Zwart.



## http://informsrmp2014.org/en/Accommodation-and-Transfer.html

| Hotel                     | Hotel Category Distance to the<br>Conference Venue |                | SIngle<br>Room  | Double<br>Room  |  |
|---------------------------|----------------------------------------------------|----------------|-----------------|-----------------|--|
| Hilton ParkSa             | 4 Star<br>Superior                                 | 2 min walking  | FULLY<br>BOOKED | FULLY<br>BOOKED |  |
| Sulte Home<br>Osmanbey    | 4 Star                                             | 10 min walking | USD 147         | USD 168         |  |
| ITU Macka<br>Guest House* |                                                    | 1 min walking  | USD 45          | USD 70          |  |

**One night:** (\$147 ≈ €105)

# **Booking.com**

SUITE O

**Totaalprijs** 



#### Bedankt, Dirk! Uw reservering is nu bevestigd.

### Istanbu Suite Home Osmanbey

Adres. Halaskargazi Caddesi No:80 Osmanbey Şişli, Şişli

Istanbul, 34371, Turkije

Telefoon: +90212 2315930

E-mail: osmanbev@istanbulsu

E-mail: osmanbey@istanbulsuite.com
Reisinformatie: Toon routebeschrijving

Uw reservering

2 nachten, kamer <u>Aanpassen</u>

Inchecken woensdag 4 juni 2014 (vanaf 13:00)

Uitchecken vrijdag 6 juni 2014 (tot 12:30)

€ 103,50

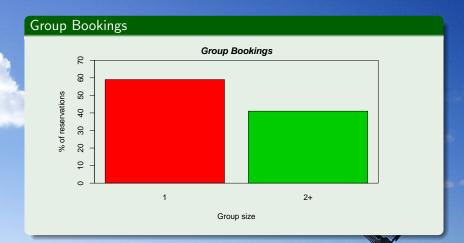
Two nights: (€103.50  $\approx$  \$147)

### Availability

✓ No booking or credit card fees!

Available rooms from Wednesday 4 June 2014 to Friday 6 June 2014, for 2 nights Change dates

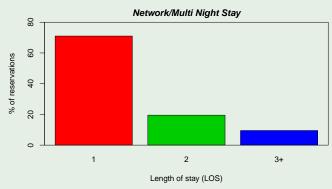
| Room type                                                               | Conditions                                                   | Max <del>▼</del> | Price<br>for 2<br>nights | Nr. rooms | Reservation               |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------|------------------|--------------------------|-----------|---------------------------|--|
| Business Double or Twin Room                                            | Non-refundable                                               | **               | € 168                    | 0 ‡       | Reserve                   |  |
| Air Conditioning Free WiFi                                              | Special                                                      | **               | € 180                    | 0 ‡       | Confirmation is immediate |  |
| Bed preference: No preference                                           | Breakfast<br>included                                        |                  |                          |           |                           |  |
| We have 1 room left! Prices are per room for 2 nights Included: 8 % VAT | Special conditions, pay when you stay     Breakfast included | •                | € 160                    | 0 ‡       |                           |  |


Two nights:  $( \le 160 \approx $220)$ 

### Our Research






- Collaboration with 5 small independent hotels in the Netherlands
- Research motivated by real hotel data



### Observation

Large part (41%) of all bookings are group bookings






## Observation

Big part (29%) stays more than one night

### **Cancellations**



### Observations

- 22% of all bookings are cancelled
- Early booking  $\implies$  high cancellation probability

### Observations from the Data

- Group bookings (41%)
- Networks (multiple night stays) (29%)
- Cancellations (22%)



### Customer Choice Cancellation Model

### Properties:

- Customer choice behaviour
- Cancellations
- Overbooking

#### Related work:

- Subramanian et alii (1999): Cancellations
- Talluri and Van Ryzin (2004): Customer choice behaviour
- Newman et alii (2010): Parameter estimation

## Other Application Areas









## Applying the Cancellation Model in Practice

- Modelling cancellations and customer choice behaviour
- Tractable and well-performing solution methods
- Efficient parameter estimation method



## Example (Talluri & van Ryzin, 2004)

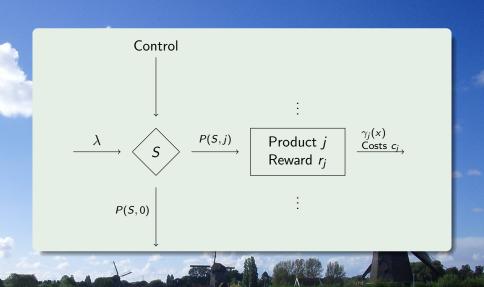
#### Hotel with

- C = 20 rooms
- n = 3 products with prices

$$r_1 = 160$$
  $r_2 = 100$   $r_3 = 90$ 

- T days before arrival
- $\lambda = 1/4$  probability that a customer arrives
- $x_j$  number of reservations for product j ( $x = (x_1, x_2, x_3)$ )
- $\gamma(x_i) = x_i/100$  probability that product j is cancelled
- $c_i = r_i$  costs if product j is cancelled

## Example (continued)


- P(S,j) probability that customer buys product j if  $S \subset \{1,2,3\}$  is offered
- P(S,0) probability that customer buys nothing
- E.g.  $S = \{1, 2\}$  and

$$P(S,1) = 0.1$$

$$P(S, 2) = 0.6$$

$$P(S,3) = 0$$

$$P(S,0) = 0.3$$

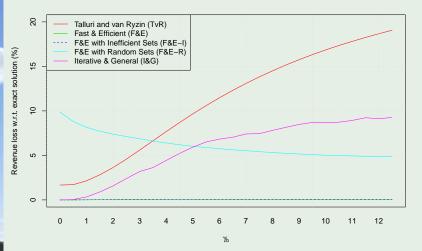


## Objective

Which rooms in combination with price and conditions to offer?

### Solution

Model as Markov decision process and solve with dynamic programming:


$$V(x,t) = \max_{S \subset N} \left\{ \lambda \sum_{j \in S} P(S,j) (r_j + V(x + e_j, t - 1)) + \sum_{j=1}^{n} \gamma_j(x) (-c_j(t) + V(x - e_j, t - 1)) + \left( 1 - \lambda \sum_{j \in S} P(S,j) - \sum_{j=1}^{n} \gamma_j(x) \right) V(x, t - 1) \right\}.$$

## **Properties**

- Reduced state space under equal and linear cancellations assumption  $\gamma_j(x) = \gamma x_j$
- Heuristic performs well under this assumption



#### Performance of Solution Methods under Different Cancellation Probabilities



## Estimating Parameters

Maximum Likelihood Function:

$$L(\lambda, \gamma, \beta | x, Z, S, j) = \prod_{t \in D} \left[ \lambda P_{tj(t)}(\beta, Z_t, S_t) \right]^{a_{\lambda}(t)}$$

$$\times \prod_{j=1}^{n} \gamma_j(x_j)^{a_j(t)} \cdot \left[ 1 - \lambda - \sum_{j=1}^{n} \gamma_j(x_j) \right]^{a(t)}$$

## New Parameter Estimation Algorithm

Based on Newman et alii (2010).

- Estimate  $\hat{\gamma}$  (cancellations)
- 2 Estimate  $\hat{\beta}$  (customer choice behaviour)
- **3** Estimate  $\hat{\alpha}$  and  $\hat{\lambda}$  using  $\hat{\beta}$  (market demand)

Upside: Fast; accurate; consistent

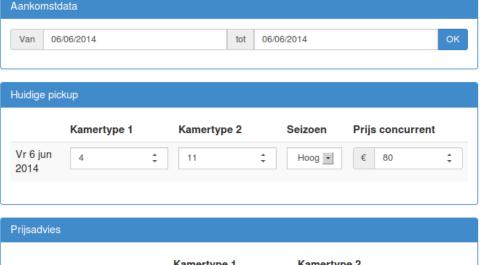
Downside: Data collection difficult for independent hotels

## Example: customer choice behaviour estimate

|         | Family | Double | Twin  | Single | Price | Competition |
|---------|--------|--------|-------|--------|-------|-------------|
| $\beta$ | 9.43   | 0.36   | -0.38 | -10.43 | -0.57 | 1.32        |

#### Observations:

- Price elasticity: higher price  $\implies$  lower demand
- ullet Competition price higher  $\Longrightarrow$  higher demand
- Family room attractive, compensated by price.
- Single room less attractive, compensated by lower price.


## Current Research: Applying the Cancallation Model

- Pilot starting soon in several Dutch hotels
- Hotels currently do not use RM system



## Collaborating hotels





#### Kamertype 1 Kamertype 2 Refundable Non-refundable Refundable Non-refundable Vr 6 jun 2014 € 84.64 € 74.04 € 85.36 € 75.02

### Conclusion

- Cancellations have big impact on revenue
- The heuristic approximates the optimal solution well
- The new parameter estimation method performs well
- Cancellation model is suitable for practitioners

### Further Research

- Application to Dutch hotels
- Expand with group bookings and networks/multiple night stays