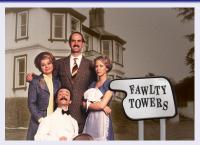
Revenue Management under Customer Choice Behaviour with Cancellations and Overbooking^I

¹Center for Mathematics and Computer Science (CWI), Amsterdam, dirk@cwi.nl

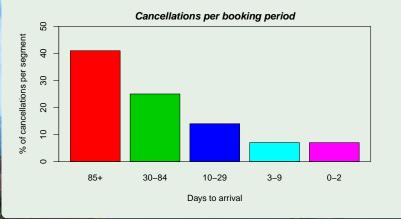

Dirk D. Sierag 🐇

November 11, 2014

¹This work is in collaboration with prof.dr. G.M.Koole, prof.dr. R.D. van der Mei, dr. J.I. van der Rest, and prof.dr. B. Zwart.

Dirk D. Sierag

Our Research



- Collaboration with 5 small independent hotels in the Netherlands
- Research motivated by real hotel data

Dirk D. Sierag

Cancellations

Seales an

Observations

- 22% of all bookings are cancelled
- ullet Early booking \implies high cancellation probability

Dirk D. Sierag

Customer Choice Cancellation Model

Properties:

- Customer choice behaviour
- Cancellations
- Overbooking

Related work:

- Subramanian et alii (1999): Cancellations
- Talluri and van Ryzin (2004): Customer choice behaviour
- Newman et alii (2010): Parameter estimation

Other Application Areas

Dirk D. Sierag

Applying the Cancellation Model in Practice

- Modelling cancellations and customer choice behaviour
- Tractable and well-performing solution methods
- Efficient parameter estimation method

Dirk D. Sierag

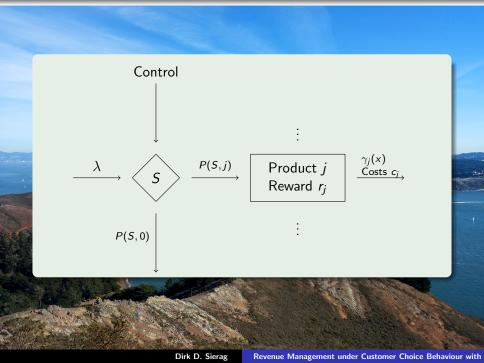
Example (Talluri & van Ryzin, 2004)

Hotel with

- *C* = 20 rooms
- *n* = 3 products with prices

$$r_1 = 160$$
 $r_2 = 100$ $r_3 = 90$

- T days before arrival
- $\lambda = 1/4$ probability that a customer arrives
- x_j number of reservations for product j ($x = (x_1, x_2, x_3)$)
- $\gamma(x_j) = x_j/100$ probability that product j is cancelled
- $c_j = r_j$ costs if product j is cancelled


Example (continued)

- P(S,j) probability that customer buys product j if S ⊂ {1,2,3} is offered
- P(S,0) probability that customer buys nothing

• E.g.
$$S = \{1, 2\}$$
 and

P(S, 1) = 0.1P(S, 2) = 0.6P(S, 3) = 0P(S, 0) = 0.3

Dirk D. Sierag

Objective

Which rooms in combination with price and conditions to offer?

Solution

Model as Markov decision process and solve with dynamic programming:

$$V(x,t) = \max_{S \subset N} \left\{ \lambda \sum_{j \in S} P(S,j) (r_j + V(x+e_j,t-1)) + \sum_{j=1}^n \gamma_j(x) (-c_j(t) + V(x-e_j,t-1)) + \left(1 - \lambda \sum_{j \in S} P(S,j) - \sum_{j=1}^n \gamma_j(x)\right) V(x,t-1) \right\}.$$

Dirk D. Sierag

Properties

- Reduced state space under equal and linear cancellations assumption $\gamma_j(x) = \gamma x_j$
- Heuristic performs well under this assumption

Estimating Parameters

Maximum Likelihood Function:

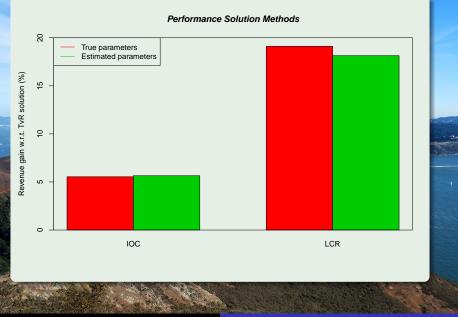
$$L(\lambda, \gamma, \beta | x, Z, S, j) = \prod_{t \in D} \left[\lambda P_{tj(t)}(\beta, Z_t, S_t) \right]^{a_{\lambda}(t)} \\ \times \prod_{j=1}^n \gamma_j(x_j)^{a_j(t)} \cdot \left[1 - \lambda - \sum_{j=1}^n \gamma_j(x_j) \right]^{a(t)}$$

New Parameter Estimation Algorithm

Based on Newman et alii (2010).

- **1** Estimate $\hat{\gamma}$ (cancellations)
- 2 Estimate $\hat{\beta}$ (customer choice behaviour)
- **3** Estimate $\hat{\alpha}$ and $\hat{\lambda}$ using $\hat{\beta}$ (market demand)

Upside: Fast; accurate; consistent


Downside: Data collection difficult for independent hotels

L VOR		computation	+1000
Гхан	IDIE	(0)	- I IIIIe

Observation days	Computation time
10	50.47
20	55.39
50	64.52
100	81.22
200	112.98

Computation time (seconds) of the estimation method for different number of observation days, using C = 200, T = 1000, n = 10.

Dirk D. Sierag

Conclusion

- Cancellations have big impact on revenue
- Estimated parameters and heuristics perform well together
- Future research: Expand with group bookings and networks/multiple night stays

