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Abstract

In this paper a direct generalisation of the recombining binomial tree model by Cox,
Ross, and Rubinstein [11] based on the Pascal’s simplex is constructed. This discrete model
can be used to approximate the prices of derivatives on multiple assets in a Black-Scholes
market environment. The generalisation keeps most aspects of the binomial model intact,
of which the following are the most important: The direct link to the Pascal’s simplex
(which specialises to Pascal’s triangle in the binomial case); the matching of moments of
the (log-transformed) process; convergence to the correct option prices both for European
and American options, when the time step length goes to zero and the completeness of the
model, at least for sufficiently small time step. The goal of this paper is to present basic
theoretical aspects of this approach. However, we also illustrate the approach by a number
of example calculations. Further possible developments of this approach are discussed in a
final section.

Keywords: Financial Derivative pricing, Multiple assets, Complete Market, Multinomial
Trees

1 Introduction

An important aspect of modern economies is the existence of financial markets. On a financial
market various assets are traded, such as stocks, bonds, and other financial contracts. Financial
contracts which are based on other assets are called derivatives. Important classes of derivatives
are European options and American options. The holder of a European contract has the right,
but not the obligation, to exercise the option at some pre-specified moment in the future (the
maturity date). If the holder exercises the option at that time, he receives a payoff equal to
an amount specified in the contract. The holder of an American option is allowed to exercise
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the option at any time prior to or on the maturity date. An important question in financial
mathematics is what a fair price of such options is today.

Many theories and models have been developed to map out the system and behaviour of financial
markets. In 1965 Samuelson [23] proposed a popular model for the behaviour of asset prices.
In 1973 Black and Scholes [3] provided an equation called the Black-Scholes equation to price
derivatives on a single asset in the Black-Scholes model which describes a Samuelson market
environment. In 1985 Cox, Ingersoll, and Ross [10] extended the Black-Scholes equation to the
generalised Black-Scholes equation to price derivatives on multiple assets. Analytic solutions to
these equations have been established for some derivatives, but solving the equation analytically
for an arbitrary derivative is usually too hard. Therefore very often discrete methods are applied
to approximate the analytically solution.

In 1979 Cox, Ross, and Rubinstein [11] provided a discrete method involving recombining bino-
mial trees based on Pascal’s triangle to approximate the price of derivatives on one asset. This
paper provides a direct generalisation of this model to a discrete method involving recombining
multinomial trees based on Pascal’s simplex to approximate the price of derivatives on multiple
assets. The path of generalisation that is followed gives new insight in the binomial model as
well as the multinomial model. The recombining multinomial trees have a nice structure, which
allows them to be used in an efficient way. Moreover, recombining multinomial trees are a useful
technique to approximate the value of both European as well as American options.

A decent amount of research has been published on pricing derivatives via discrete approxima-
tions. Some of these approximations are tree-based, while others are based on finite-difference
methods or Monte-Carlo simulation. Since the focus of this paper is on trees, here only some
works related to tree-based methods will be referred to.

In 1979 Cox, Ross, and Rubinstein presented a method to price derivatives on one asset via a
recombining binomial tree [11]. A parallel can be made with Pascal’s triangle, as is stated in
Section 2. In the recombining binomial tree the first and second moment of the continuous time
log-transformed process are matched with the first and second moment in the tree corresponding
to the discrete time log-transformed process. A no-arbitrage condition is derived and is assumed
to hold. The resulting model is complete and the (unique) risk neutral measure (or ‘pricing
measure’ or ‘equivalent martingale measure’) can be constructed easily.

There are several ways in which the binomial model can be generalised to models for multiple
assets. One can distinguish between generalisations in which the discrete-time financial market
described is complete, such as in Cheyette [9], He [17] and Chen, Chung, and Yang [8] and
which will also be the case in the present paper and generalisations in which the discrete-time
financial market described is not complete such as in Boyle [6]; Boyle, Evnine, and Gibbs [7];
Ho, Stapleton, and Subrahmanyam [19].

In Section 2 Pascal’s triangle is used to construct binomial trees to price derivatives on a single
asset. Our derivation that explicitly uses Pascal’s triangle is not known in literature, to the
best knowledge of the authors, but is crucial for the generalisation to the multivariate case. A
detailed new geometric insight into the structure of the binomial method and the convergence
is given, after appropriate scaling, of the probability distribution on the tree to a continuous
distribution when the number of steps in the tree increases. The direct link to Pascal’s triangle
gives rise to the generalisation provided in Section 3, which is based on Pascal’s simplex in the
case of several risky assets and using a similar geometric projection technique as for the case of
one risky asset. These considerations lead to the generalisation of existing methods and to new
approaches to efficient calculation of option prices.

As stated, the three articles most related to the present paper are Cheyette [9], He [17] and
Chen, Chung, and Yang [8], in chronological order. In Cheyette [9] it was shown how the
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multivariate geometric Brownian motion with drift model can be approximated by a complete
tree, by choosing appropriate direction vectors. However the moments of the tree itself are not
matched directly to those of the continuous time model. He [17] showed for a wider class of
continuous time models that they can be approximated by complete tree models. He matched
the first and second moment of the log-normal process with the first and second moment of
his tree, instead of matching the moments of the log-transformed (Gaussian) process with the
moments of the log-transformed tree as was the original approach of CRR. As a result He [17]
has to assume that the share prices in his tree are non-negative in his specifications and that
his trees are free of arbitrage. Chen, Chung, and Yang [8] matches the moments of the log-
transformed processes. They focus on the bivariate case and give suggestions as to how to
extend this to valuation of options with more than two underlying shares. Furthermore both
[17] and [8] assume that the probabilities in the tree are equal, although in the case of [17] this
refers to the physical probabilities (resulting in a more complicated formula for the ‘risk neutral‘
probabilities) while in [8] this refers to the risk-neutral probabilities directly.

Other related literature that focuses on using lattice-based methods to price derivatives on
multiple assets include the following. All methods have in common that they are not set up
in a complete market environment, in contrast to our model. Boyle [6] introduced a tree-based
method on two assets with five branches per jump. Boyle, Evnine, and Gibbs [7] generalised this
model to k dimensions. One major drawback of this model is that the transition probabilities
may be negative. Kamrad and Ritchken [21] improved the efficiency and stability of this model
by including more branches. A downside is the computability of such tree with many branches,
especially in higher dimensions. Ho, Stapleton and Subrahmanyam [19] expanded the model
from [7] with a time-varying variance-covariance structure. However, the model is limited to
Bermudan options since the model only allows exercising options at fixed moments in time.
Ekvall [12] and Gamba and Trigeorgis [14] introduce improved versions of [7] that avoids the
possibility of negative jump probabilities. Recently, Hilliard [18] introduces a simple multivariate
grid method to price options, which gives similar results as [12] and [14].

In the present paper we follow the original approach taken by Cox, Ross and Rubinstein closely
and stress the link with the Pascal simplex, which appears to be new in this context. In
this way the generalisation to the multinomial case is very natural and makes it very easy to
understand why and how this should work. In our ‘tuning’ of the tree we take the variance in the
log-transformed tree process equal to the variance of the log-tranformed (Gaussian) continuous-
time process, while taking the expectation of the share price process in the tree such that we get
a martingale (up to the discount factor). This implies that the probabilities in the tree are the
risk-neutral probabilities, so we are modelling directly under the risk-neutral measure (or pricing
measure), which is of course the measure required for option pricing and has the advantage that
our tree models are arbitrage free by construction. In our trees all share prices are positive.
We show that, at least for sufficiently small time step, the tree models represent a complete
financial market. This also allows to compute a hedging strategy for a given financial derivative,
that is purely based on the tree. From the results of [1] it follows that, under mild conditions,
the value of European as well as American options, evaluated using the trees, converge to the
corresponding values evaluated using the continuous-time model.

The remainder of this paper is organised as follows. In Section 2 the recombining binomial
tree method is derived in a different way than is found in literature. Along this path the
generalisation to recombining multinomial trees is presented in Section 3. Some numerical
examples are provided in Section 4. Topics for further research are proposed in Section 5.
Finally in Section 6 some concluding remarks are made.
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2 Recombining Binomial Trees Based on Pascal’s Triangle

In 1979 Cox, Ross, and Rubinstein [11] made a major breakthrough by introducing a method to
approximate the value of options on a single asset Z via a binomial tree. This section shows that
the binomial tree can be constructed using the two-dimensional grid N2 and Pascal’s triangle.
The observation that a binomial tree can be interpreted as Pascal’s triangle is crucial for the
generalisation to the multivariate case in Section 3, where multinomial trees are constructed
using Pascal’s simplex, the generalisation of Pascal’s triangle to higher dimensions.

Consider an asset Z that follows a geometric Brownian motion:

dZ = Zµdt+ ZσdW,

where µ ∈ R, σ > 0, and W is a Wiener process.

The goal of this section is to construct a recombining binomial tree with N levels to approximate
the price process Z of an asset and the price of a (European) option on this asset. The option is
assumed to have a finite expiration date and we consider the asset price and the option price on
the finite time interval between the present and the expiration date. The tree can be interpreted
as follows. In each time step, the value of the asset can go either up or down (more precisely,
the next share price is obtained by multiplication by a factor which can take two values, which
we call u and d and all that is required is actually 0 < d < u), where the asset price at time
0 equals Z0. Each node in the tree represents a possible outcome of the asset price and has
a certain probability to be reached. The tree will be constructed in several steps, starting
with the construction of a random walk X on N2. Using some linear algebra the random walk
on N2 is transformed to a random walk X ′ on the real line R. Theorem 2.1 below will show
that an associated sequence of random variables converges to the asset price process Z at the
expiration date. Furthermore, this tree can be used to price the option. The motivation for
this construction is linked to Pascal’s triangle and the convergence of a sequence of recombining
multinomial trees to the asset price process Z.

Two-Dimensional Lattice and Pascal’s Triangle

Let p ∈ (0, 1). Consider the two-dimensional Cartesian product N̂2 := 1√
pN ×

1√
1−pN. Define

ê1 := e1/
√
p = (1/

√
p, 0) and ê2 := e2/

√
1− p = (0, 1/

√
1− p). On this lattice, consider a

random walk

X = {Xn}∞n=0 ⊂ N̂2,

starting at X0 = (0, 0) ∈ N̂2. Each step of the random walk moves ‘one unit’ in the positive
direction of one of the axes. With probability p this is a move in the positive direction of the
first axis of N̂2 (x 7→ x+ ê1), and with probability 1− p it is a move in the positive direction of
the second axis of N̂2 (x 7→ x+ ê2). The random walk X is thus defined as follows:

Xn :=
n∑
i=1

Yi,

where the sequence Y = {Yi}i∈N is defined by a sequence of i.i.d. random vectors Yi with

P (Yi = ê1) = p,

P (Yi = ê2) = 1− p.

After N steps there is just a finite number of possible values which XN can take. Say after N
steps there have been i moves in the direction of the first axis and N − i moves in the direction
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of the second axis, with 0 ≤ i ≤ N . Furthermore, there are
(
N
i

)
possible walks which lead to

XN = iê1 + (N − i)ê2, of which each walk occurs with probability pi(1− p)N−i. Therefore, the
probability that XN = iê1 + (N − i)ê2 equals

P
(
XN = iê1 + (N − i)ê2

)
=

(
N

i

)
pi(1− p)N−i,

for all 0 ≤ i ≤ N . At level N the value of XN is equal to XN = iê1 + (N − i)ê2 where i has
a binomial distribution B(N, p). As a shorthand for this, we will say that XN has a binomial
distribution B(N, p).

The lattice that is constructed in this way is basically Pascal’s triangle. After N steps the
random walk arrives at the N -th level of Pascal’s triangle. See Figure 1 for a visualisation of
the construction of this two-dimensional lattice.
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Figure 1: Visualisation of the Pascal-based two-dimensional lattice. Each red dotted
line represents the level at which the random walk arrives after n steps, where n is
the corresponding number in red.

One-Dimensional Representation of the Two-Dimensional Random Walk

Projecting the random walk X on the hyperplane orthogonal to ι = (
√
p,
√

1− p) yields a
random walk on the line orthogonal to ι. Now if the whole system is rotated clockwise such that
ι coincides with the unit vector ê1, the projected random walk coincides with a random walk on
the second axis of R2. By eliminating the first axis a random walk X ′ on R is constructed.
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The random walk X ′ on R can also be found in the following way. First the system is rotated
such that e1 coincides with ι. Then the image is reflected on the line through ι. Finally the
system is projected on the plane orthogonal to ê1 through (0, 0). This results in a random walk
on the hyperplane orthogonal to ê1 through (0, 0). This method is used because it turns out
that it works well in the generalisation to multiple dimensions in Section 3. The orthogonal
matrix that represents the rotation and reflection is

Q =

( √
p

√
1− p√

1− p −√p

)
The matrix that projects the unit vectors on R is therefore M̃ = (

√
1− p,−√p). By projecting

the random walk X on R via M̃ , a new random walk X ′ = {X ′n} on Z is constructed, defined
by

X ′n := M̃Xn,

for all n ≥ 0. Note that X ′ starts in the origin, i.e., X ′0 = 0. In each step, the probability to
move up by ‘one unit’ is equal to p, and the probability to move down by ‘one unit’ is equal
to 1− p. See Figure 2 for a visualisation of the two-dimensional rotation, and Figure 3 for the
projection of the two-dimensional random walk to the one-dimensional walk. In this visualisation
a different orientation is used for convenience.

0 e2

e1

Qe1Qe2

(Qe2)′

ι

Qι

Figure 2: The rotation of the unit
vectors and ι by the orthogonal ma-
trix Q. (Qe2)′ is the reflection of
Qe2 in the line through ι.

e2

e1

0

Qe1Qe2

Me1Me2

Figure 3: The projection of the ro-
tated unit vectors on R by M .

Construction of the Recombining Binomial Tree

Let Y ′ = {Y ′n}n∈N be defined by the projection of Y on R via M̃ , i.e.,

Y ′n := M̃Yn,

for all n ∈ N. Then Y ′ consists of a sequence of i.i.d. random variables {Y ′n}n∈N on R, with

P

(
Y ′n =

√
1−p
p

)
= p,

P
(
Y ′n = −

√
p

1−p

)
= 1− p.
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As a consequence, the expected value of Y ′n is 0, and the variance is equal to 1, for each n ∈ N.
Also for X ′ the following holds:

X ′N = M̃XN = M̃
N∑
n=0

Yn =
N∑
n=0

M̃Yn =
N∑
n=0

Y ′n.

Theorem 2.1. Let σ > 0, µ ≥ 0. Then the sequence

{ σ√
N
X ′N + µ}N∈N,

converges in distribution to the normal distribution N(µ, σ2).

Proof. Standard, using the Central Limit Theorem.

The result of Theorem 2.1 is of significant importance for approximating the price process of
assets. Consider a price process Z of an asset that follows the geometric Brownian motion given
by

dZ = Zµdt+ ZσdW.

A classic result of the geometric Brownian motion is that the process logZ follows the normal
distribution N(µ̂T, σ2T ) on any interval of length T , with µ̂ = µ − 1

2σ
2 (e.g., see Björk [2],

Chapter 5.2, page 65). By applying Theorem 2.1 it can be seen that the price process logZ on
any interval of length T can be approximated by the sequence

{σ
√
δtX ′N + µ̂T}N∈N,

with δt = T/N . The elements of this sequence can be rewritten such that for each N ∈ N it
holds that

σ
√
δtX ′N + µ̂T =

N∑
n=1

{
σ
√
δtY ′n + µ̂δt

}
. (1)

Since Y ′n has only two possible outcomes, σ
√
δtY ′n + µ̂δt only has two possible outcomes for each

n ∈ N. This is used to define the direction vectors for the log-normal process in Definition 2.1

Definition 2.1. Let the numbers d1 and d2 be given by

d1 = exp

{√
1−p
p σ
√
δt+ µ̂δt

}
, d2 = exp

{
−
√

p
1−pσ

√
δt+ µ̂δt

}
. (2)

Then d1 > d2 > 0 and we will call d1 and d2 the direction vectors.

Remark: The reason for this terminology will become clear later on when the multinomial case
is treated.

With the direction vectors the log-transformed price process Ẑ at time T can thus be approxi-
mated by summing the log-transformed asset price at time 0 with N ∈ N independent random
draws from the distribution χN , with χN given by

P (χN = log d1) = p,

P (χN = log d2) = 1− p.
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The price process Z at time T on the other hand can be approximated by multiplying the asset
price at time 0 with N ∈ N independent random draws from the distribution χ′N := exp(yN ),
with χ′N given by

P
(
χ′N = d1

)
= p,

P
(
χ′N = d2

)
= 1− p.

Definition 2.2. Let N ∈ N. Then the graph containing all possible paths of the
random walk with N time steps described above is called a recombining binomial
tree.

See Figure 4 for a visualisation of a recombining binomial tree with N = 4. Note the similarities
between the recombining binomial tree in Figure 4 and the two-dimensional lattice in Figure 1.
Pascal’s triangle can be viewed as the log-transformed tree corresponding to the recombining
multinomial tree. Therefore the recombining binomial tree can be viewed as a lattice. This nice
structure of the recombining binomial trees implies the potential of the trees to be implemented
in an efficient algorithm. Section 5 elaborates on the consequences of this property.
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Asset price Z
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Z0

d2Z0

d1Z0

d2
1Z0

d1d2Z0

d2
2Z0

d3
1Z0

d2
1d2Z0

d1d
2
2Z0

d3
2Z0

d4
1Z0

d3
1d2Z0

d2
1d

2
2Z0

d1d
3
2Z0

d4
2Z0

1

1

1

1

2

1

1

3

3

1

1

4

6

4

1

p

1− p

p

1− p
p

1− p

p

1− p
p

1− p
p

1− p

p

1− p
p

1− p
p

1− p
p

1− p

Figure 4: Visualisation of a four-step binomial tree. The red numbers indicate the
number of ways to get to the corresponding node.

If the movement is in the first direction d1 it is called a move upward, and if the movement is
in the second direction d2, it is called a move downward. In literature the upward move d1 is
often addressed as u, and the downward move d2 is often addressed as d. The direction vectors
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d1 and d2 coincide in the binomial case with the direction vectors of the generalisation of the
recombining binomial tree to a recombining multinomial tree described in Section 3.

Completeness of the Model and Pricing Derivatives on One Asset

A nice and well known property of the recombining binomial tree is that it is complete under
mild conditions, which is stated in Theorem 2.2.

Theorem 2.2. Consider the financial market with one share, with price process
described by the binomial tree with direction vectors d1 and d2 and associated prob-
abilities p > 0 and 1− p > 0. Let the interest rate r in this market be constant . If
d1 > erδt > d2 then the market is free of arbitrage and complete.

Proof. Standard; see any textbook on Financial Mathematics treating the binomial
tree, such as Björk [2] Proposition 2.26

Consider a derivative F with the expiration date at time T , and suppose the value of the
derivative F (Z) at time T is known for any Z. Consider the recombining binomial tree with
N steps of length δt = T/N corresponding to the underlying asset Z of F . Then F (ν) can be
calculated for any node ν in the recombining binomial tree at time T . Suppose that the value
F (ν ′) is known for all nodes at time mδt, 1 ≤ m ≤ N . Let ν be a node at time (m − 1)δt and
let ν1 = ν + e1 and ν2 = ν + e2. By virtue of Theorem 2.2 a replicating portfolio ∆ = (∆1,∆2)
can be found. If F is European, the value of F (ν) equals

F (ν) = ∆1Z(ν) + ∆2e
−rδt.

If however F is American, the possibility of an early exercise has to be taken into account. The
early exercise leads to a payoff of according to the payoff function Fpayoff. Therefore the value
of the American option F (ν) equals

F (ν) = max
{
Fpayoff(ν),∆1Z(ν) + ∆2e

−rδt
}
.

By working backwards through the recombining binomial tree the value of the option F (0)
(American or European) can be found. For the American option the recombining binomial tree
has an advantage over other methods: It also shows what the optimal exercise time is. More
theory on recombining binomial trees on American options on one asset can be found in Shreve
[24] and Shreve [25].

As is well-known the value of the replicating portfolio at node ν can also be computed as the
discounted expectation

e−rδt(qF (ν + e1) + (1− q)F (ν + e2)) (3)

where q = d1−erδt
d1−d2 is the ‘risk-neutral’ (or ‘risk-adjusted’) probability. For the purpose of option

pricing one can consider the continuous-time process under its associated ‘risk-neutral’ measure
Q which is characterised by the stochastic differential equation

dZ = Zrdt+ ZσdW̄ .

where W̄ is a standard Brownian motion process under Q. This process can be approximated
by a binomial tree with µ = r. The stochastic process described by the tree can be made into a
martingale, apart from the usual discounting, by replacing the direction vectors by

d̃1 = d1e
−λδt, d̃2 = d2e

−λδt
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where λ is chosen such that

pd̃1 + (1− p)d̃2 = erδt

hence

eλδt = (pd1 + (1− p)d2)e−rδt.

Note that λ will converge to zero for δ1 ↓ 0, as can be seen by writing

d1 = 1 +
1− p
p

σ
√
δt+ (r − 1

2
σ2)δt+

1

2

1− p
p

σ2δt+ higher order terms

and

d2 = 1− p

1− p
σ
√
δt+ (r − 1

2
σ2)δt+

1

2

p

1− p
σ2δt+ higher order terms

which gives

pd1 + (1− p)d2 − rδt = 1 + 0.
√
δt+ 0.δt+ higher order terms

showing that indeed λ will converge to zero if δt ↓ 0.

As a consequence using the direction vectors d̃1, d̃2 instead of d1, d2 one still gets convergence to
the same continuous-time lognormal process for N →∞. A binomial tree with direction vectors
d̃1, d̃2 and probabilities p > 0 and (1− p) > 0 respectively, is free of arbitrage and complete and
the associated risk-neutral probability q is actually equal to p.

3 Recombining Multinomial Trees Based on Pascal’s Simplex

Many attempts to generalise the Cox-Ross-Rubinstein model have been made. There are two
main ways of generalisations. The first generalises the number of branches, but keeps the
number of underlying assets constant, namely equal to one. The second generalises the number
of underlying assets from one to many. An example of the first case is the 1986 article by Boyle
[5], where a trinomial tree is introduced to price options on one asset. Unfortunately, this model
lacked the property of a complete market environment. An example of the second case is the
tree-based model to price options depending on two assets Boyle introduced two years later
[6]. Again these models are not set up in a complete market environment. In 1990 Cheyette
introduced a discrete model that approximates the price of options depending on multiple assets
in a complete market environment [9]. In a short paper he showed that the derivative prices
derived from a discrete time model converge to the derivative price derived from the generalised
Black-Scholes model. A more extensive analysis of a class of models of this type was presented by
He [17]. In the present paper it will be shown how the discrete time multivariate generalisation
of the recombining binomial tree using Pascal’s simplex, the generalisation of Pascal’s triangle,
can be derived in a very natural fashion. The fact that this model represents a arbitrage-free,
complete market under mild conditions is shown. Furthermore, some examples are presented
of how to price derivatives depending on multiple assets in Section 4, using the recombining
multinomial tree derived in this Section.

k + 1-Dimensional Lattice and Pascal’s Simplex

The recombining binomial tree method in section 2 is based on Pascal’s triangle. In the multivari-
ate model the generalisation is based on Pascal’s simplex. Pascal’s simplex is the generalisation

10



of Pascal’s triangle in higher dimensions. The numbers in Pascal’s triangle are based on the
coefficients of powers of a binomial, a polynomial with two terms. The coefficients of the n-th
level of Pascal’s triangle are the coefficients of the n-th power of the binomial (x + y). The
Binomial Theorem states that for all binomials (x+y) and n ∈ N the following statement holds:

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−1.

The coefficients in the n-th level of Pascal’s triangle are therefore given by
(
n
i

)
, 0 ≤ i ≤ n.

Pascal’s simplex is constructed in a similar way in higher dimensions. The elements of Pascals
simplex in k dimensions are the coefficients of powers of a multinomial, a polynomial with k
terms. The Multinomial Theorem states that for any multinomial (x1 + . . .+ xk) it holds that

(x1 + . . .+ xk)
n =

∑
n1+...+nk=n

(
n

n1, . . . , nk

) k∏
i=1

xnii .

The elements in the n-th level of Pascal’s simplex therefore consist of the multinomial coefficients(
n

n1, . . . , nk

)
,

where n1 + . . .+ nk = n.

In section 2 Pascal’s triangle was constructed on the two-dimensional lattice N̂2. Let p ∈ (0, 1)k+1

with
∑k+1

i=1 pi = 1. Pascal’s simplex can be constructed on a (k+ 1)-dimensional lattice N̂k+1 in

a similar way, where N̂k+1 is defined by

N̂k+1 :=
1
√
p1

N× . . .× 1
√
pk+1

N.

Define êi := ei/
√
pi. Consider a random walk X = {Xn}n≥0 on N̂k+1, such that in each step a

move is made of one step êi in the positive direction of axis i of N̂k+1 with probability pi. Let
{Yn}n≥1 be a sequence of i.i.d. random vectors in N̂k+1 such that

P (Yn = êi) = pi,

for all 1 ≤ i ≤ k + 1. Then the random walk X is defined as

XN :=


N∑
n=1

Yn if N > 0,

(0, . . . , 0) if N = 0,

for all N ∈ N. Suppose that after N steps, there have been ni moves in the direction of the i-th
axis, for all 1 ≤ i ≤ k + 1. There are exactly

(
N

n1,...,nk+1

)
routes to get to this point, and each

route has probability pn1
1 · . . . ·p

nk+1

k+1 . The probability to get to XN =
∑k+1

i=1 niêi therefore equals

P

(
XN =

k+1∑
i=1

niêi

)
=

(
N

n1, . . . , nk+1

) k+1∏
i=1

pnii .

Derivation of the M-vectors

The movements in (k + 1)-dimensions need to be translated into a hyperplane of k-dimensions,
such that they can be linked to the assets. Therefore the random walk is projected on the
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hyperplane orthogonal to the vector ι = (
√
p1, . . . ,

√
pk+1) = p1ê1 + p2ê2 + . . .+ pk+1êk+1. Since

the random walk is defined by the unit vectors ei, i = 1, 2, . . . , k+1, it is only necessary to consider
the projection of these unit vectors. After the projection the (k+1) unit vectors are represented
in the k-dimensional hyperplane in Rk+1 through the origin orthogonal to ι, but a representation
in Rk is preferred. A rotation can be applied on the whole system such that ι is mapped to the
first unit vector ê1. The k+ 1 rotated projections of the unit vectors e1, e2, . . . , ek+1 now lie in a
hyperplane orthogonal to ê1. Therefore these vectors can be represented in Rk by the projection
on the plane orthogonal to ê1 (the first entries of all (k + 1) projected vectors equal 0 and this
entry can just be discarded to get the representation in Rk). Define the set of (k + 1) vectors
thus constructed as the M̃ -vectors. (see also Definition 3.1 below).

To find the M̃ -vectors it is also possible to first apply the rotation, and then project the (k+ 1)
rotated unit vectors on the hyperplane orthogonal to the first unit vector. The difference is
subtle, but turns out to be a more efficient calculation. A visualisation of this process for k = 2
is given in Figure 5 and Figure 6. Again consider the (k + 1) unit vectors e1, e2, . . . , ek+1 and ι
in Rk+1. By applying the correct orthogonal matrix Q> to these vectors the system is rotated
properly. After the rotation the unit vectors form an orthogonal set of k + 1 vectors in Rk+1.
These are the columns of an orthogonal matrix Q>. By construction Q>ι = e1 and therefore
iota = Qe1, so ι is the first column of Q. The other column vectors are arbitrary with length 1
such that Q is orthogonal. This is because rotating Rk+1 such that ι us mapped to e1 can be
done in many different ways and the difference between any such rotation is a rotation of the
image space that leaves e1 invariant. Such an orthogonal matrix Q can be constructed by first
applying the Gram-Schmidt process to ι and the first k of the k + 1 unit vectors, of which the
last already form an orthonormal basis of Rk+1. Note that ι and any k of the k+ 1 unit vectors
form a basis of Rk+1, because ι > 0 element-wise. Then by normalising the orthogonal basis
constructed by the Gram-Schmidt process an orthonormal basis Q is constructed. The result is
given below:

Qij =



√
pi if j = 1,√√√√∑k+1

m=i+1 pm∑k+1
m=i pm

if j = i+ 1,

0 if j > i+ 1,

−
√√√√ pj−1pi(∑k+1

m=j pm

)(∑k+1
m=j−1 pm

) if j < i+ 1.

for all 1 ≤ i, j ≤ k + 1.

The matrix Q is an orthogonal positive lower Hessenberg matrix and Q> is an orthogonal posi-
tive upper Hessenberg matrix. The general formula for an orthogonal positive upper Hessenberg
matrix can be found for example in [16], from which the present formula follows in a straight-
forward manner (by specialising to the case where the first row is strictly positive).

Consider the orthogonal matrix Q and the unit vectors of Rk+1. By applying Q> to the unit
vectors the rotation gives an orthonormal basis which consists of the column vectors of Q>,
which are the row vectors of the orthogonal matrix Q. For k = 2 the matrix Q> is given by

Q> =


√
p1

√
p2

√
p3√

1− p1 −
√

p1p2

1− p1
−
√

p1p3

1− p1

0

√
p3

1− p1
−
√

p2

1− p1

 .

See Figure 5 for a visualisation of the rotation for k = 2.
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0

ι

e3

e2

e1

Q>e1

Q>e2Q>e3

Figure 5: The rotation of the unit
vectors and ι by the orthogonal ma-
trix Q.

0

Me2

Me1

Me3

Q>e1

Q>e2Q>e3

Figure 6: The projection of the ro-
tated unit vectors on R.

The first row of Q> is consistent with our requirement that Q> is a rotation matrix that rotates
ι to the unit vector. The projection of the (k + 1) column vectors of Q> on the hyperplane
orthogonal to e1 is realised by eliminating the entries in the first row of Q>. This leads to a
k×(k+1) matrix M̃ with column vectors in Rk. See Figure 6 for a visualisation of the projection
of Q> on the plane orthogonal to e1 for k = 2. From the matrix M̃ we will define the M̃ -vectors.
Recall that XN =

∑N
n=1 Yn and that Yn can take the values êi = 1√

pi
ei, i = 1, 2, . . . , k + 1.

So the vectors that êi, i = 1, 2, . . . , k + 1 are mapped to are the column vectors of the matrix
M̃.diag( 1√

p1
, 1√

p2
, . . . , 1√

pk+1
). These columns will be called the M -vectors.

Definition 3.1. The elements of M̃ are given by

M̃ij =



√√√√∑k+1
m=j+1 pm∑k+1
m=j pm

if i = j,

0 if i > j,

−
√√√√ pipj(∑k+1

m=i+1 pm

)(∑k+1
m=i pm

) if i < j.

The column vectors of M̃ are called M̃ -vectors.. LetM = M̃.diag( 1√
p1
, 1√

p2
, . . . , 1√

pk+1
).

The columns of this matrix will be called the M -vectors.

Remark: Note that the first row of Q>.diag( 1√
p1
, 1√

p2
, . . . , 1√

pk+1
) has all entries equal to one

and that the columns of this matrix are all orthogonal to each other (but do not have length
one of course).
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Construction of the Recombining Multinomial Tree

The k × (k + 1) matrix that contains both the rotation and projection of the unit vectors in
Rk+1 to Rk is equal to Q> without it’s first row, and therefore is equal to M̃ . The random
walk X can therefore be projected on Rk by applying the matrix M̃ . This leads to a random
walk X ′ = M̃X on Rk. As Yn takes on one of the values êi = 1√

pi
ei in each step a move in the

direction of M•i := Mei occurs with probability pi, for all 1 ≤ i ≤ k + 1. Define the sequence
Y ′ = {Yn}n≥1 by Y ′n = M̃Yn for all n ≥ 1. Then X ′N can be rewritten for all N ∈ N as

X ′N = M̃XN = M̃
N∑
n=1

Yn =
N∑
n=1

M̃Yn =
N∑
n=1

Y ′n.

Theorem 3.1. Let k ∈ N and suppose that µ ∈ Rk+ and that Σ is a k×k symmetric
positive definite matrix. Let L be a k × k matrix such that Σ = LL>. Then the
sequence

{ 1√
N
LX ′N + µ}N∈N,

converges in distribution to the multivariate normal distribution Nk(µ,Σ).

Proof. For n ∈ N the expected value of LY ′n is equal to

E[LY ′n] = LM̃E[Yn] = LM̃ι = (0, . . . , 0),

where the last equality holds because each row of M̃ is orthogonal to ι. On the other
hand, the covariance matrix of LY ′n is equal to

Cov(LY ′n, LY
′
n) = E[LY ′n(LY ′n)>]− E[LY ′n]E[LY ′n]>

= LM̃E[YnY
>
n ]M̃>L>.

For E[YnY
>
n ] it holds that

E[YnY
>
n ] =

k+1∑
i=1

piêiê
>
i =

k+1∑
i=1

eie
>
i = I,

such that

Cov(LY ′n, LY
′
n) = LM̃IM̃>L> = Σ,

for all n ∈ N. Hence the sequence {LY ′n}n≥0 is a sequence of i.i.d. random vectors
with mean 0 and covariance matrix Σ. Also, for each N ∈ N it holds that

1√
N
LX ′N =

1√
N
L

N∑
n=1

Y ′n =
√
N

(
1

N

N∑
n=1

LY ′n

)
.

By using the Multivariate Central Limit Theorem to the sequence {LY ′n}n≥0 of i.i.d.
random vectors, it can be seen that the sequence { 1√

N
LX ′N}N∈N converges in dis-

tribution to the multivariate normal distribution Nk(0,Σ). By adding the mean
µ it follows that the sequence { 1√

N
LX ′N + µ}N∈N converges in distribution to the

multivariate normal distribution Nk(µ,Σ).
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For any symmetric positive definite matrix Σ the k×k matrix L in Theorem 3.1 can be computed
by applying Cholesky decomposition. In fact, as is well-known, every matrix A which satisfies
AA> = Σ > 0 is equal to L post-multiplied by an orthogonal matrix.

Theorem 3.1 can be used to make the connection between random walks on Rk and a continuous-
time price process of k assets. Let Z be the continuous-time price process of k assets that follows
a multivariate geometric Brownian motion with drift given by

dZi = Ziµidt+ Ziσi.dWi,

for all 1 ≤ i ≤ k, where W = (W1,W2, . . . ,Wk)
> is a multivariate Brownian motion process

with covariance matrix given by E(W (1)W (1)> = Γ; the matrix Γ is chosen such that all its
diagonal elements are equal to one (hence Γ is a so-called correlation matrix). As a result
each of the processes Wi are standard scalar Brownian motion processes and the vector process
(σ1W1, σ2W2, . . . , σkWk)

> is a multivariate Brownian motion process with covariance matrix
given by E(W (1)W (1)>) =: Σ = diag(σ1, σ2, . . . , σk).Γ.diag(σ1, σ2, . . . , σk).

Let Ẑ = logZ be the element-wise log-transformed price process of Z. Similarly to the one-
dimensional case it holds that Ẑ(t) follows the k-variate normal distribution Nk(Z̃(0) + µ̂t,Σt)
for any t > 0, where the logarithm of a vector denotes the vector of logarithms of the vector
entries, and where µ̂ denotes the vector with i−th entry equal to µi− 1

2σ
2
i . Let δt = T/N . From

Theorem 3.1 it follows that the value of Ẑ(T )− Ẑ(0) can be approximated by the sequence

{
√
δtLX ′N + µ̂T}N∈N,

where L is a k × k matrix such that LL> = Σ. The elements of this sequence can be rewritten
such that

√
δtLX ′N + µ̂T =

N∑
n=1

(√
δtLY ′N + µ̂δt

)
.

Definition 3.2. Let d = {di}k+1
i=1 ⊂ Rk be given by

di(j) := exp
{√

δt(LM•i)j + µ̂jδt
}
, (4)

for all 1 ≤ j ≤ k, for all 1 ≤ i ≤ k + 1. Then the elements d(j), 1 ≤ j ≤ k, of d are
called the direction vectors.

Using the direction vectors the value of Ẑ(T ) − Ẑ(0) can thus be approximated by summing
N ∈ N independent random draws from the distribution χN , with χN given by

P (χN = log di) = pi,

for all 1 ≤ i ≤ k + 1. Therefore the value of Z(T )/Z(0) can be approximated by the product of
N ∈ N independent random draws from the distribution χ′N := exp(χN ), that is,

P (χ′N = di) = pi,

for all 1 ≤ i ≤ k + 1.

Definition 3.3. Let N ∈ N. Then the graph containing all possible paths of the
random walk with N time steps described above is called a recombining multinomial
tree.
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The visualisation of a recombining trinomial tree is given in Figure 7.

Completeness of the Model and Pricing Derivatives on Multiple Assets

As stated earlier completeness of an arbitrage-free financial market is an important property,
which allows one to compute a replicating portfolio for any financial derivative, and hence
to compute the value of such a financial derivative. A generalisation of Theorem 2.2 for our
multinomial model for sufficiently small time step δt > 0 is presented below in Theorem 3.2.
Consider the direction vectors in the case µj = r, j = 1, 2, . . . . , k, and corresponding prob-
ability vector p = (p1, p2, . . . , pk+1). Let λj , j = 1, 2, . . . , k be the real numbers defined by
p1d1(j) + p2d2(j) + . . .+ pk+1dk+1(j) = e−λjδt, j = 1, 2, . . . , k. Let d̃(j) := d(j)e(λj+r)δt, j =
1, 2, . . . , k. We will call the d̃i, i = 1, 2, . . . , k + 1 the bias-corrected direction vectors. Note that
this correction amounts to replacing µ̂j = r − 1

2σ
2
j by r − 1

2σ
2
j + λj , j = 1, 2. . . . , k in the defi-

nition of the direction vectors. Consider the tree with starting value Z(0) and direction vectors
d̃i, i = 1, 2, . . . , k + 1 and probabilities p1, p2, . . . , pk+1 and time step δt > 0.

Theorem 3.2. Let Z(0) > 0, r > 0 and Σ > 0 and T be fixed. For each δt > 0
consider the tree with starting value S0 and direction vectors d̃i, i = 1, 2, . . . , k + 1
and positive probabilities p1, p2, . . . , pk+1. For δt > 0 sufficiently small the financial
market defined by this multinomial tree is complete.

Proof. The market described by the multinomial tree is free of arbitrage, as
the probability vector p = (p1, p2, . . . , pk+1) is strictly positive and represents the
risk-neutral (‘martingale’) measure. It follows that the market is complete if the
matrix of one-step returns of the risk-free bond and the k assets under the k + 1
possible scenarios is non-singular. As is well-known, for small time step δt > 0 the
returns can be approximated by the logarithmic returns. In this way the question
can be reduced to showing that the matrix with first row (1, 1, . . . , 1) ∈ Rk+1 and
the other rows equal to the k rows of LM is non-singular. As L is non-singular,
this is equivalent to showing that the matrix with first row (1, 1, . . . , 1) ∈ Rk+1

and the other rows equal to the k rows of M is non-singular. This matrix can be
factored as Q>.diag(1/

√
p1, 1/

√
p2, . . . , 1/

√
pk+1), which is obviously non-singular as

Q is orthogonal and the probabilities pi, i = 1, 2, . . . , k + 1 are positive.

Consider a derivative F with time to maturity T depending on k assets Z = (Z1, . . . , Zk) and
suppose the value of the derivative F (Z, T ) is known at time T . Consider the recombining
multinomial tree with N steps of length δt = T/N corresponding to the underlying assets Z.
Then F (ν) can be calculated for any node ν at time T in the recombining multinomial tree.
Suppose that the value of the option is known for all nodes at time mδt, with 1 ≤ m ≤ N . Let
ν be a node at time (m − 1)δt and let νi = ν + ei for all 1 ≤ i ≤ k + 1. By virtue of Theorem
3.2 a replicating portfolio ∆ = (∆1, . . . ,∆k+1) of F can be found. This replicating portfolio ∆
can be found by solving the following system of equations:

Z1(ν1) Z2(ν1) . . . Zk(ν1) 1
Z1(ν2) Z2(ν2) . . . Zk(ν2) 1

...
... ·

...
...

Z1(νk+1) Z2(νk+1) . . . Zk(νk+1) 1




∆1

∆2
...

∆k+1

 =


F (ν1)
F (ν2)

...
F (νk+1)

 . (5)
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0

δt

2δt

3δt = T

Z1

Z2

Time t

Figure 7: This is a visualisation of a projection of the random walk of the recombining
trinomial tree in three dimensions to two dimensions with three time steps of length
δt on two assets Z1 and Z2 with mean µ = (0, 0) and Σ = I. The random walk
starts at the black node on top, which is projected on the black node on the two
dimensional plane. From there there are three possible moves to time δt, which are
represented by the red nodes and lines. The moves from δt to 2δt are represented by
the blue lines, and the possible outcomes are represented by the blue nodes. Finally,
the green lines represent the moves from time 2δt to time 3δt, and the possible
outcomes at time T = 3δt are represented by the green nodes and the black node.
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If F is a European option, the value of F (ν) equals

F (ν) =

k∑
j=1

∆jZj(ν) + ∆k+1e
−rδt. (6)

By working backwards through the recombining multinomial tree the value of F (0) can be found.
If however F is an American option, the holder of the option has the choice at node ν to exercise
the option and he receives a payoff according to the payoff function Fpayoff(Z(ν)). Hence the
value of the option at node ν for the American option equals

F (ν) = max

{
Fpayoff(Z(ν)),

k∑
i=1

∆iZi(ν) + ∆k+1e
−rδt

}
. (7)

Just like the two-asset problem discussed in Section 2, the ‘risk-neutral’ measure can be used to
evaluate F (ν). The direct generalisation of Equation (3) is given by

F (ν) =
k+1∑
i=1

piF (νi)e
−rδt. (8)

To see that this equation is valid, first note that the right hand side of Equation (8) is equal to
the right hand side of Equation (5) multiplied by e−rδtp>. This gives

e−rδtp>


F (ν1)
F (ν2)

...
F (νk+1)

 = p>


Z1(ν1) Z2(ν1) . . . Zk(ν1) 1
Z1(ν2) Z2(ν2) . . . Zk(ν2) 1

...
... ·

...
...

Z1(νk+1) Z2(νk+1) . . . Zk(νk+1) 1




∆1

∆2
...

∆k+1

 e−rδt.

Using the definition of the bias-corrected direction vectors, for j ∈ {1, . . . , k} it follows that

p>

 Zj(ν1)
...

Zj(νk+1)

 = e−rδtZj(ν)
k+1∑
i=1

pid̃i(j) = Zj(ν). (9)

Hence Equation (8) is correct:

k+1∑
i=1

piF (νi)e
−rδt =

(
Z1(ν) Z2(ν) . . . Zk(ν) e−rδt

)


∆1

∆2
...

∆k+1

 (10)

=

k∑
j=1

Zj(ν)∆j + ∆k+1e
−rδt = F (v). (11)

Note that by using the bias-corrected direction vectors, the probability measure given by
p1, p2, . . . , pk+1 on the tree is risk neutral. In the tree without the bias-corrected direction
vectors, the first moment and variance of the log share price in the tree model match the
corresponding first moment and variance of the log share price in the continuous time model,
while in the tree with the bias-corrected direction vectors the first moment of the share price
and the variance of the log share price are matching those in the continuous time model.
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Convergence of Option Prices

Let a simple option be an option that depends on the share prices at the time of exercise but not
on the share prices at earlier dates. The recombining multinomial tree method described in this
section can be a used to approximate the price of simple European and simple American options.
In the case of a simple European option suppose that the pay-off is piecewise continuously
differentiable up to the sixth order, with all of these derivatives satisfying a polynomial growth
condition (i.e. each one has absolute value that is bounded from above by a polynomial). Then
the values of such a European option, as computed using the recombining multinomial trees
described in this section converge to the corresponding option value based on the continuous
time share-price model when N → ∞. This follows from [17], p.537, condition 1 (the other
condition mentioned there is already satisfied by our continuous time model). For the case of
simple American options the option values converge to the corresponding option values based
on the continuous-time model, if a certain uniform integrability condition is satisfied, namely
the condition given on page 301 in formula (5.1) of the paper [1]. In that paper it is argued that
for many practical options the uniform integrability condition is indeed satisfied. (Note that
the Assumptions 2.1 and 2.2 of that paper are satisfied in our case.) In that same paper also
some generalisations are discussed for which the convergence has been proved, for instance for
the case that the share pays a continuous dividend yield.

For non-simple options the valuation using the multinomial trees presented here would require
generalisations that fall outside the scope of this paper.

4 Numerical Results

This section provides some numerical examples of pricing derivatives on several assets using
the theory on recombining multinomial trees discussed in Section 3. The analytical values
are also provided, and the results are compared with other models on pricing derivatives on
multiple assets. The goal of this paper is to provide a theoretical satisfactory solution rather
than a numerical satisfactory solution, and therefore the examples in this section are provided
to illustrate the theory. The results show that the estimated option price converges to the
analytical value.

In the construction of a tree one needs to decide which probability vector p ∈ Rk+1 and which
decomposition matrix L to use, where Σ = LL>. It turns out that different choices lead to
different results. Since all trees are valid and the option price derived from the trees converges
to the analytical solution, the average value of multiple trees also converges to the analytic
solution. In the examples of this section the results of averaging over different trees is con-
sidered. Per example there are two parameters that are varied: the depth of the tree N and
the number of sample trees N̄ that is used for averaging, where N ∈ {1, 2, 5, 10, 20, 50} and
N̄ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. For each combination of N and N̄ the following
procedure is repeated 1000 times: construct N̄ random trees of depth N , and calculate the
corresponding average option price of all N̄ trees. A random tree is constructed by drawing an
orthogonal matrix Λ uniformly1 and a random vector p, drawn uniformly with low However, this
brings complications to the model. The extent to which this model can be generalised to a mar-
ket environment with stochastic standard deviations and interest rates has to be investigated.
er bound p2. Then LΛ is used as the decomposition matrix, since it satisfies LΛ(LΛ)> = Σ,
where L is the Cholesky decomposition of Σ. Over all 1000 repetitions the mean of the option
prices is evaluated, as well as the standard deviation.

1The Von Misen-Fisher distribution was used to draw orthogonal matrices uniformly
2The Matlab function randfixedsum.m by Roger Stafford was used to draw the probability vectors.
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The example in Section 4.1 discusses an option on two assets to exchange one asset for another.
An analytical solution to this problem is provided independently by [13] and [22]. Section 4.2
discusses call and put options on the maximum and minimum of two assets. The analytical
solution to this problem is provided by [26]. Finally, Section 4.3 discusses call and put options
on the maximum and minimum of three assets, for which the analytical solution is provided by
[20].

4.1 Example 1: Exchange Option

Consider a European derivative F with time to maturity T in a Black-Scholes model with two
assets. Let the payoff function of F at time T be given by

F (Z, T ) = max{Z1(T )− Z2(T ), 0}.

The risk-free interest rate equals r = 0.05; initial asset prices Z(0) = (40, 40); and covariance
matrix equal to

Σ =

(
0.04 0.03
0.03 0.09

)
.

The analytical solution to this problem is given by F ∗(Z.0) = 3.219. The authors of [8] also
provided numerical solutions to this problem, and the results are compared to the results stated
in their paper. The results are given in Tables 1 and 2.

N = 5 N = 10 N = 20 N = 50
Sample size mean sd mean sd mean sd mean sd

1 3.281 0.111 3.249 0.065 3.236 0.045 3.228 0.029
2 3.260 0.079 3.240 0.049 3.229 0.032 3.222 0.019
5 3.273 0.058 3.242 0.033 3.231 0.023 3.223 0.014

10 3.262 0.040 3.234 0.024 3.227 0.015 3.221 0.009
20 3.266 0.031 3.237 0.017 3.229 0.011 3.223 0.007
50 3.266 0.016 3.236 0.010 3.228 0.006 3.222 0.004

100 3.267 0.012 3.237 0.008 3.228 0.005 3.222 0.003

CCY - 3.264 3.235 3.226

Table 1: The benchmark results by [8] are denoted by CCY. The analytical solution
equals 3.219. Random probability vectors are uniformly drawn with a lower bound
of 0.1.

N = 5 N = 10 N = 20 N = 50
Lower bound p mean sd mean sd mean sd mean sd

0.001 3.177 0.040 3.197 0.028 3.209 0.019 3.218 0.012
0.01 3.210 0.031 3.224 0.018 3.228 0.011 3.223 0.005
0.1 3.267 0.012 3.237 0.008 3.228 0.005 3.222 0.003
0.2 3.257 0.010 3.239 0.006 3.228 0.004 3.223 0.002
0.3 3.278 0.007 3.239 0.006 3.228 0.003 3.223 0.002

CCY - 3.264 3.235 3.226

Table 2: The benchmark results by [8] are denoted by CCY. The analytical solution
is 3.219. The results are based on a sample size of 100, for which 1000 simulations
ran.
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First observe that the results of both Tables 1 and 2 support the theory that the option prices
converge as N increases. The analysis of Section 3 shows asymptotic behaviour, but these
numerical results show that even for quite small trees the option price can be well approximated.
The lower bound on p also influences the mean: the results from Table 2 show that small
lower bounds underestimate the analytical solution, while larger upper bounds overestimate the
analytical solution. This indicates that the selection of p impacts the outcome. Studies on
distributions on p could improve the performance, as will be discussed in Section 5.

A second observation is that the results suggest that the standard deviation heavily depends
on the sample size and the lower bound on p. Table 2 shows a small lower bound increases
the standard deviation, which can be explained by the increasing size of the set of probability
vectors. Table 1 shows that the standard deviation decreases as the sample size increases, as
is expected. This implies that using a larger sample size when calculating an option price is
desirable to get more stable solutions. Also, as the sample size increases but the depth of the
tree remains fixed, the solution seems to converge, but not to the analytical solution. On the
other hand, if the sample size remains fixed and the depth of the tree increases, the standard
deviation decreases.

4.2 Options on the Maximum and Mimimum of Two assets

This example considers options on the Mimimum and maximum of two assets Z = (Z1, Z2).
The market environment is the same as in Example 4.1, but now options on the maximum and
mimimum of the assets are considered:

1. Call options on the maximum of the assets. Denote this option by c(K), where K is the
strike price of the call option. The payoff function at time T equals

max{0,max{Z1(T ), Z2(T )} −K}.

2. Put options on the mimimum of the assets. Denote this option by p(K), where K is the
strike price of the put option. The payoff function at time T equals

max{0,K −min{Z1(T ), Z2(T )}}.

The analytical solution to this problem is presented by [26]. A generalisation of the solution
to this problem is presented by [20]. This example has also been used by [6] and [8], to il-
lustrate their tree-based discrete approximations of European options. Their results serve as
a benchmark for this example. For both the call and put options we consider all strike prices
K with K ∈ {35, 40, 45}. In this example, three methods of calculating trees are compared:
1) probability vectors p are fixed at p = (1/3, 1/3, 1/3), but orthogonal matrices are selected
randomly (method Q); 2) p is selected randomly, but the decomposition matrix is fixed at L, the
Cholesky decomposition (method P); and 3) both p and the decomposition matrices are selected
randomly (method P&Q). Based on the results from Example 4.1 a sample size of N̄ = 100 and
a lower bound of p = 0.1 is used. The results are given in Tables 3 and 4.

The performance of the methods varies: for call options, P seems to underestimate the option
value, while Q&P and Q in most cases overestimate the option value. For put options the values
for all methods seem closer to each other. However, the standard deviations differ: Q&P has
the highest standard deviation in all but one case, and in most cases the standard deviation of
P is higher than the standard deviation of Q. From the tree methods, Q and Q&P perform best.
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N = 5 N = 10 N = 20 N = 50
K Met. mean sd mean sd mean sd mean sd AS

35

Q 9.482 0.118 9.442 0.096 9.430 0.058 9.422 0.037

9.420
P 9.354 0.147 9.373 0.078 9.381 0.052 9.394 0.031

Q&P 9.452 0.179 9.431 0.115 9.425 0.076 9.421 0.047
B - 9.404 9.414 9.419

CCY - 9.448 9.220 9.419

40

Q 5.577 0.109 5.521 0.143 5.504 0.072 5.492 0.049

5.488
P 5.479 0.167 5.442 0.113 5.451 0.074 5.462 0.045

Q&P 5.557 0.206 5.510 0.152 5.501 0.101 5.492 0.063
B - 5.466 5.477 5.483

45

Q 2.784 0.158 2.816 0.095 2.804 0.070 2.795 0.045

2.795
P 2.726 0.263 2.741 0.168 2.756 0.116 2.768 0.073

Q&P 2.824 0.255 2.811 0.178 2.801 0.122 2.797 0.077
B - 2.817 2.79 2.792

Table 3: In this table the discrete approximations to price call options c(K) via
recombining trinomial trees are stated. c(K) denotes a European call option with
strike price K and p(K) denotes a European put option with strike price K. The
benchmarks are the results stated by [6], which are denoted by B; and the results
stated by [8], which are denoted by CCY. The results are based on a sample size of
100, for which 1000 simulations ran.

N = 5 N = 10 N = 20 N = 50
K Met. mean sd mean sd mean sd mean sd AS

35

Q 1.400 0.078 1.409 0.040 1.395 0.028 1.392 0.019

1.387
P 1.404 0.129 1.418 0.070 1.404 0.048 1.398 0.029

Q&P 1.401 0.128 1.398 0.078 1.392 0.052 1.389 0.032
B - - 1.425 - 1.394 - 1.392 -

40

Q 3.891 0.054 3.843 0.083 3.818 0.044 3.806 0.030

3.798
P 3.900 0.106 3.848 0.048 3.826 0.025 3.812 0.012

Q&P 3.874 0.141 3.830 0.096 3.814 0.063 3.806 0.038
B - - 3.778 - 3.790 - 3.795

45

Q 7.571 0.119 7.533 0.045 7.513 0.039 7.505 0.022

7.500
P 7.584 0.131 7.539 0.087 7.524 0.056 7.513 0.034

Q&P 7.552 0.182 7.525 0.108 7.512 0.074 7.506 0.046
B - - 7.475 - 7.493 - 7.499 -

Table 4: In this table the discrete approximations to price p(K) via recombining
trinomial trees are stated. p(K) denotes a European put option with strike price K.
The benchmarks are the results stated by [6], which are denoted by B. The results
are based on a sample size of 100, for which 1000 simulations ran.

4.3 Options on the Maximum and Minimum of Three assets

In this example we consider options on the maximum and the mimimum of three assets Z =
(Z1, Z2, Z3). The initial asset prices are given by

Z(0) = (Z1(0), Z2(0), Z3(0)) = (100, 100, 100).

The interest rate is given by r = 0.1. The correlation coefficients are given by ρ12 = ρ13 =
ρ23 = 0.5 and the standard deviations σ = (σ1, σ2, σ3) are given by σ = (0.2, 0.2, 0.2). Hence
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the covariance matrix is given by

Σ =

0.04 0.02 0.02
0.02 0.04 0.02
0.02 0.02 0.04

 .

The considered options are call options and put options with strike price 100 on the maximum or
mimimum of the three assets. They have time to maturity equal to T = 1 year and an exercise
price of K = 100. Denote c(max) as the call option on the maximum of the three assets; c(min)
as the call option on the minimum of the three assets; p(max) as the put option on the maximum
of the three assets; and p(min) as the put option on the minimum of the three assets.

The option prices are approximated using recombining quadrinomial trees. This example has
also been used by [7] and [8]. The results are compared with their results. The analytical
solution to the problems can be evaluated using the theory by [20]. Again, a sample size of
N̄ = 100 and a lower bound of p = 0.1 is used. The results are stated in Table 5.

Number of time steps (N) Analytical
Method 20 40 60 80 solution

c(max)
P&Q 22.703 22.689 22.684 22.680

22.672BEG 22.281 22.479 22.544 22.576
CCY 22.643 22.660 22.664 22.668

c(min)
P&Q 5.240 5.248 5.253 5.250

5.249BEG 5.226 5.237 5.241 5.243
CCY 5.293 5.263 5.258 5.259

p(max)
P&Q 0.937 0.933 0.931 0.932

0.936BEG 0.919 0.925 0.928 0.929
CCY 0.945 0.940 0.937 0.937

c(min)
P&Q 7.439 7.422 7.417 7.415

7.403BEG 7.240 7.323 7.350 7.364
CCY 7.421 7.407 7.406 7.410

Table 5: In this table the approximations of options on three assets are presented.
c(max) and c(min) denote European call options with strike price 100 on the max-
imum and minimum of the three assets, respectively. p(max) and p(min) denote
European put options with strike price 100 on the maximum and minimum of the
three assets, respectively. The results stated by [7] are denoted by BEG. The results
stated by [8] are denoted by CCY. P&Q denote our results.

The results show that our method match the results from [7] and [8]. Even for a small number
of time steps our results approximate the analytical solution well.
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5 Future Directions

The theory on recombining multinomial trees described in Section 3 can be an efficient tool to
price options on multiple assets. There appears to be quite some scope for both theoretical and
practical developments.

The results by He [17] and Amin and Khanna [1] for the convergence of option prices does
not provide any information about the error of the estimates. However it is nice to know some
bounds on how close the results by the recombining multinomial trees are to the actual values. In
Section 4 some results on bounds are shown, but these are based on simulation. More knowledge
on this subject would clarify the quality of the option values computed with the recombining
multinomial tree method.

Another direction to improve the theory on recombining multinomial trees is to generalise the
model to a market environment with stochastic standard deviations and interest rate. This
market environment is more realistic and therefore leads to more accurate results. In order to
model stochastic volatility one finds two approaches in the literature, namely one in which one
or more extra stochastic sources are included and one in which this is not the case. It would be
interesting to investigate whether the tree methods presented in this paper can be generalised
to include stochastic volatility. In the first case one would need a tree of higher dimension, to
include the extra stochastic sources. In both cases the quantities modelled by the tree no longer
have to represent share prices, but can be interpreted as state vectors, from which the share
prices are obtained by applying an appropriate mapping.

We would like to highlight two possible ways in which we think the results based on recombining
multinomial trees can be improved. These are treated in the following small subsections.

Efficient Calculations: The Field-Programmable Gate Array (FPGA)

The recombining multinomial tree structure presented here is based on the link with the Pascal
simplex and with linear dynamics in the k−dimensional lattice Nk. These are well-studied struc-
tures in computational algebra and in so-called ND systems theory (see Hanzon and Hazewinkel
[15], pages 1-6; and Bleylevens [4]). These links can be exploited in setting up an efficient al-
gorithm for option valuation, using concepts from constructive algebra.These calculations make
use of the grid of the M -vectors instead of the usual grids such as Nk. In a recombining multi-
nomial tree for which the moments of the log-normal process are matched the approximation
of the option price takes a large number of simple operations. Therefore locating the variables
in the physical memory of the computer needed to do the calculation is very time consuming
compared to the calculation itself. By allocating the data in the memory in an efficient way the
computation time can be reduced.

To exploit even further the fact that the underlying computations are simple and that the
main difficulty lies in efficient bookkeeping as well as in the large amounts of data that need to
be processed, we are presently investigating usage of FPGAs for speeding up the calculations,
especially for deeper trees and for models with more assets. A field-programmable gate array
(FPGA) is an integrated circuit with programmable logical components. The FPGA allows us
to do computations at the deepest hardware level and hence to improve computational speed
considerably.
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Monte Carlo Simulation

The size of the tree grows exponentially as the depth of the tree increases, so at some point
it is physically impossible to evaluate a larger tree within a reasonable amount of time. If
more accuracy is needed, other methods need to be used. The numerical results of Section 4
showed that the mean option value derived from random trees provide a better result. The
probability vector p and the decomposition L, with LL> = Σ, are randomly chosen in these
experiments. This suggests to investigate whether choosing these parameters randomly with
well-chosen probability distributions can lead to a Monte Carlo method. Monte Carlo methods
have the advantage that, if tuned properly, they converge to the correct value and produce a
confidence interval that will contain the correct value with given (high) probability. This is
currently under investigation.

6 Concluding Remarks

This paper developed a discrete method to approximate the price of derivatives on multiple
assets in a Black-Scholes model. It is not always possible to solve the Black-Scholes equation
analytically. For the univariate case the binomial model by Cox, Ross, and Rubinstein is reviewed
in Section 2. The binomial model is derived in a different way than is found in literature. This
new insight in the derivation of the binomial model served as a foundation to generalise the model
to multiple dimensions in Section 3. The goal was to keep most aspects of the binomial model
intact, such that the difference between the binomial model and the multinomial model would
almost only be the different number of underlying assets. Therefore the properties of the model
were kept intact concerning the direct link to Pascal’s simplex; the matching of the variance of
the log-transformed process (opposed to matching the variance of the log-normal process); and
the completeness of the model. The link to Pascal’s simplex proved to be very useful. Moreover,
on account of this property the recombining multinomial trees have the potential to be used in
an efficient algorithm using computer algebra, for example on field-programmable gate arrays.
The fact that the recombining multinomial trees are setup in a complete market environment
makes the model applicable to all derivatives. Also it can be used to provide hedging strategies
and it is setup in an arbitrage free system.

The results of the numerical examples described in Section 4 were compared with other related
discrete methods. The examples of the model presented in this paper do not show a preference
over other models. The advantages of the model presented in this paper are the relatively low
number of nodes in the tree and the simple computations necessary.

Section 5 provided some topics for further research concerning recombining multinomial trees.
First, it was argued that recombining multinomial trees have the potential to be used in an
efficient algorithm using computer algebra. The fact that the model is based on the grid of
Pascal’s simplex plays a major role. Applying Monte Carlo theory could be another promising
research direction. A further topic for research is extending the model to a market environment
with stochastic standard deviations and interest rate. This model is more realistic and an
efficient generalisation is therefore desirable.

Altogether the recombining multinomial trees provide a theoretically satisfactory solution. It is
a direct generalisation of the recombining binomial trees and provides an alternative to solving
the generalised Black-Scholes equation. It is hoped that the insights presented in this paper will
lead to new developments that can make the recombining multinomial trees approach into an
efficient tool for option valuation in practice.
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