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Abstract

A popular trend in revenue management captures the behaviour of customers that choose between
different available products. The provided solution methods assume that there is no uncertainty in
the parameters of the model. However, in practice the parameters may be uncertain, e.g., because
of estimation errors. A relatively recent field of optimisation that takes into account uncertainty in
the optimisation procedure is robust optimisation. Robust optimisation methods provide solutions
where the worst-case scenario is optimised, taking into account uncertainty in parameters. This
paper studies a robust optimisation approach to single-leg choice-based revenue management based
on Talluri and van Ryzin (2004) and Sierag et al. (2015). The problem is modelled as a Markov
decision process and solved using dynamic programming. This paper uses φ-divergence uncertainty
sets to model the probability vectors of general choice-models. Novel robust optimisation techniques
are applied to the dynamic program, taking into account uncertainty in the parameters. An important
yet surprising insight from the numerical results is that the robust solution method performs better
for smaller inventory than for larger inventory. Moreover, the robust solution method shows great
performance when knowledge on cancellation behaviour is lacking: on average the expected reward
then improves by 2.5-3.25%.

Keywords: Revenue Management, Dynamic Pricing, Customer Choice Models, Markov Decision
Processes, Robust Optimisation



1 Introduction

A popular trend in revenue management models captures the behaviour of customers that choose between
different available products. The renowned paper by Talluri and van Ryzin Talluri and van Ryzin (2004)
combined revenue management models with customer choice models. Many contributions to the body of
literature on customer choice models have been made, e.g., better solution methods Strauss and Talluri
(2012), network models that take into account multiple night stays/multiple flight legs Liu and van Ryzin
(2008), and recently Sierag et al. (2015) extended the model to include cancellations, to which the model of
this paper is closely related. The solution methods used in these models often assume that the parameters
of the model are known. However, in practice the true parameter values are unknown and have to be
estimated from data. Estimating the parameters of a customer choice model requires more data than
only sales data, which is not always available, so an estimation error is not unlikely. J. Newman et al.
(2012) provide hotel data and describe the complexity of acquiring a proper data-set. Estimation errors
lead to uncertainty in the parameters and very likely a misspecified model. Optimising a misspecified
model leads to potentially suboptimal policies and revenue loss. A relatively recent field of optimisation
that takes into account uncertainty in the optimisation procedure is robust optimisation. In this field,
the values of the parameters are assumed to lie in an uncertainty set, rather than to be known exactly.
Robust optimisation methods provide solutions where the worst-case scenario is optimised, providing a
trade-off between risk and average reward. See Ben-Tal et al. (2009) for an introduction of theories on
robust optimization.

This paper studies a robust optimisation approach to single-leg choice-based revenue management. In
this model a single-leg revenue management problem is modelled as a Markov decision process and
solved using dynamic programming. This paper provides a general robust formulation of this model.
In each step of the dynamic program a small maximin problem has to be solved. The minimisation
problem can be formulated as a linear program. The uncertain parameters are probabilities, of which the
uncertainty set is modelled using a φ-divergence measure. Tractable robust counterparts are presented
for this problem. The methodologies that are used are based on Nilim and El Ghaoui (2005), who
provide a robust formulation for general dynamic programming formulations, and the recent paper by
Ben-Tal et al. (2013), who provide a novel formulation for robust counterparts for probabilities. The main
contribution of this paper is a tractable robust formulation for general choice models. Numerical results
in Section 4 show that the robust solution method outperforms the nominal solution in many cases when
using estimated parameters. Moreover, the robust solution method gives a relatively higher improvement
in revenue for smaller hotels than for larger hotels. Related to this paper is Rusmevichientong and
Topaloglu (2012), where a robust formulation is provided of the multinomial logit model. In contrast
to their paper, this paper focuses on the estimated probabilities instead of the parameters of the chosen
model. This way the robust solution method can be applied to any choice-model, or any estimate of the
choice-probabilities.

Other revenue management problems have been solved using robust optimisation. Several static and
dynamic single-leg revenue management problems that do not take into account customer choice behaviour
have been studied. Ball and Queyranne (2009) provide a robust solution method for the single-leg revenue
management problem that does not require demand information. Robust results for various policy classes
are provided. Birbil et al. (2009) provide robust optimization methods for one static and one dynamic
single-leg revenue management problem. Lan et al. (2008) provide a robust solution method for the single-
leg revenue management problem under independent demand model when limited information is available
on demand. Network revenue management problems have also been studied in robust optimisation
context. Among them are Lai and Ng (2005) provide a stochastic programming solution to a network
model for hotels, without using choice-models. Perakis and Roels (2010) describe two robust solution
methods for solving the network revenue management problem that does not take into account customer
choice behaviour. One solution method solves the maximin problem and the other solves the minimax
regret problem. As mentioned before, Rusmevichientong and Topaloglu (2012) provide a study of robust
optimization applied to the assortment problem under the multinomial logit model. Farias et al. (2013)
provide a robust non-parametric estimation method and a study on selecting the right choice-model using
sales data.

The remainder of this paper is organised as follows. In Section A an introduction is given to robust
linear optimisation. Moreover, the theory of φ-divergence uncertainty sets is explained, which is used in
the theories of this paper. In Section 2 the single-leg customer choice model is described. The extension
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to cancellations is also presented. The model is reformulated in an equivalent formulation that is more
convenient for this paper. In Section 3 the robust counterpart of the nominal model is presented. First
the formulation of the uncertainty sets is given. Then the robust dynamic program is formulated. The
remainder of this section provides tractable reformulations for several φ-divergence measures. In Section
4 numerical results are presented to validate the model. In Section 5 some concluding remarks are given.

2 Model Description

In this section the set-up of the problem is presented in hotel-context. However, the general description
applies to other areas, such as seats on a flight or tickets for a theatre performance. Consider a hotel
with C identical rooms that wants to sell them in T time units, 0 being the arrival time. This arrival
time is typically an arrival day, where the rooms for that night are offered for sale T days in advance.
Overbooking is allowed up to Cmax rooms. Each room can be sold using a fare product j, which is a
combination of a room with a price rj and certain conditions, such as the cancellation policy. Assume
there is a finite number of fare products N = {1, . . . , n}. At each moment in time the hotel manager
decides which offer-set S ⊂ N of fare products to offer. Potential customers arrive according to a Poisson
process with rate λ > 0. These clients show interest in the hotel, but their final decision is based on the
offer-set S displayed. The customer either buys one of the fare products j ∈ S, with probability Pj(S), or
leave and buy nothing at all, with probability P0(S). Customers are allowed to cancel their reservation,
according to the cancellation policy. Assume that the cancellation of reservations happen independent
from each other. This assumption is intuitively clear: clients are assumed to arrive independently, so
their decision to cancel their reservation is not dependent on the decisions of other clients. If there are xj
reservations for fare product j, then cancellations occur according to the exponential distribution with
rate γjxj , γj ∈ R+. See Figure 1 for an overview of the model.

λ
S

Control

...

Product j
Pj(S)

...
P0(S)

γjxj

Figure 1: Visualisation of the customer choice cancellation model. Per arrival day the ar-
rival process is Poisson distributed with parameter λ. The manager controls the offer set S.
Under this offer set an arriving customer buys product j ∈ S with probability Pj(S). With
probability P0(S) the customer buys nothing. Finally, cancellations of product j follow an
exponential distribution with parameter γj .

The problem for the manager is to decide which offer-set S ⊂ N to offer to maximise expected revenue.
To solve this problem, the continuous time Markov decision process is discretised and set up as a dynamic
programming formulation. The state space of this dynamic programming formulation keeps track of the
number of reservations per product, so it grows exponentially with the number of products. Previous
studies found a solution method that approximates the optimal solution by collapsing the state space
(Algorithm 3.1 in Sierag et al., 2015). This is the only available tractable solution method that shows
promising results. Therefore, this algorithm, which is called nominal method henceforth, is used as a
benchmark and functions as a base for the robust solution method that is to follow. Another approxi-
mation described in Sierag et al. (2015) considers the model without cancellations. It is based on Talluri
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and van Ryzin (2004), and is denoted by Talluri and van Ryzin (TvR) method henceforth. The TvR
method is also included in the numerical studies.

The collapsed dynamic program only keeps track of the total number of reservations, leading to the state
space {0, 1, . . . , Cmax}. Time is divided into T time periods, where the length of the intervals is such
that the probability that more than one event occurs is very small. Therefore it is assumed that only
one event occurs per time period, where an event is either an arrival, a cancellation, or neither arrival
nor cancellation. Denote with λ the probability that a customer arrives in a time period; and γy the
probability that a product is cancelled in state y, γ ∈ R. The single cancellation rate can be estimated
from the individual cancellation rates, for example by the average, as is suggested in Sierag et al. (2015).
The probability that no purchase occurs in a time period equals the sum of the probability that neither an
arrival and nor a cancellation occurs, and the probability that an arrival occurs but the arriving customer
makes no purchase. This is equal to

(1− λ− γy) + λP0(S) = 1− λ
∑
j∈S

Pj(S)− γy.

In each time period the decision needs to be made which set S to offer. Note that time has to be scaled
such that λ+ γCmax ≤ 1, otherwise the probabilities are not well defined.

Let Vt(y) be the maximal expected revenue from time t to the arrival day in state y. Define ∆Hj(xj , t)
by

∆Hj(t) =

{
γjcj(t) + (1− γj)∆Hj(t− 1) if t > 1,

0 if t = 1,

for all j ∈ N . The Bellman equation corresponding to the discretised Markov chain is

Vt(y) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
[
rj −∆Hj(t) + Vt−1(y + 1)

]
if 0 < y < Cmax,

+γyVt−1(y − 1)

+

1− λ
∑
j∈S

Pj(S)− γy

Vt−1(y)

}

γCmaxVt−1(Cmax − 1) if y = Cmax,

+ (1− γCmax)Vt−1(Cmax)

max
S⊂N

{
λ
∑
j∈S

Pj(S)
[
rj −∆Hj(t) + Vt−1(1)

]
if y = 0.

+

1− λ
∑
j∈S

Pj(S)

Vt−1(0)

}

(1)

Below a reformulation of Equation (1) is given, for convenience later on in the paper. Note that λ, Pj(S)

and γ are probabilities. Define P̃j(S) := λPj(S) for all j ∈ N (Pj(S) = 0 if j /∈ S), P̃n+1(S) := γy, and

P̃0(S) = 1−
∑n+1
j=1 P̃j(S). Also define r̃j := rj −∆Hj(t). Then Equation (1) can be rewritten as

Vt(y) = max
S⊂N

{∑
j∈S

P̃j(S)
[
r̃j + Vt−1(y + 1)

]
+ P̃n+1(S)Vt−1(y − 1) + P̃0(S)Vt−1(y)

}
. (2)

3 Robust Reformulation

Finding accurate estimates for the problem at hand is challenging. Commonly used maximum likelihood
estimation methods can be found in J. P. Newman et al. (2014), Sierag et al. (2015), or Talluri and
van Ryzin (2004). Estimating parameters from data often lead to estimation errors, as is the case with
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the mentioned methods. Incorrect estimates may lead to suboptimal decisions, and therefore suboptimal
revenue. One way to deal with estimation errors in the optimisation process is robust optimisation.
In this field, the values of the parameters are assumed to lie in an uncertainty set, rather than to be
known exactly. The worst case scenario is optimised under the uncertainty set. The goal is to improve
performance by using the robust solution method rather than the nominal solution method. In A a brief
introduction to robust linear optimisation is given.

Recently Ben-Tal et al. (2013) have provided tractable robust counterpart formulations for uncertainty
sets that are based on φ-divergence measures. These uncertainty sets are used to model uncertainty in
probabilities. The dynamic program in Equation (2) uses probabilities consisting of estimated parameters
to find an optimal solution. The derivation of tractable robust counterparts for (2) under φ-divergence
uncertainty sets is described below.

3.1 Reformulation

The uncertainty in the adjusted purchase probabilities P̃j(S) is assumed to deviate from the nominal
value p̄ according to a φ-divergence measure. Consider a function φ : R → R that is convex for t ≥ 0,
φ(1) = 0, 0φ(1/0) := a limt→∞ φ(t)/t for a > 0, and 0φ(0/0) := 0. The φ-divergence measure Iφ(p, q)
between two vectors p and q, p, q ∈ Rn, is defined as

Iφ(p, q) :=

n∑
i=1

qiφ(pi/qi).

A φ-divergence measure measures the distance between two (probability) vectors according to the diver-
gence function φ.

A popular choice for φ is the Cressie-Read divergence:

φθ(t) =
1− θ + θt− tθ

θ(1− θ)
, θ 6= 0, 1, t ≥ 0.

The φ-divergence measure Iφ(p, q) is then given by

Iφ(p, q) =
1

θ(1− θ)

(
1−

∑
i

pθi q
1−θ
i

)
.

In Section 3.2 other φ-divergence measures are discussed.

In Ben-Tal et al. (2013) it is shown that the robust counterpart of a linear constraint with φ-divergence
uncertainty can be written in terms of the conjugate φ∗ : R→ R ∪∞ of φ, which is defined as follows:

φ∗(s) := sup
t≥0
{st− φ(t)}. (3)

Let X be a one-dimensional random variable with finite support {1, . . . ,m}. Denote p = (p1, . . . , pm) as
the probability vector of X, such that pi = P(X = i). Let p̂0 be the maximum likelihood estimator of p.
From Ben-Tal et al. (2013) the uncertainty region for p is given by

{p ∈ Rm |Iφ(p, p̂0) ≤ ρ} ,

with

ρ :=
φ

′′
(1)

N
χ2
m,1−α,

with N the sample size, α the confidence level, and χ2
m,1−α is the 1−α percentile of the χ2

m-distribution.

Then the uncertainty set ZS for the purchase probabilities P̃j(S) is given by

ZS =
{
p ∈ Rn+2 |p ≥ 0, Cp ≤ d, Iφ(p, p̄) ≤ ρ

}
,
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with

C•j =

{
(1,−1) if j ∈ S ∪ {0, n+ 1},
(0, 0) otherwise.

d = (1,−1).

Nilim and El Ghaoui (2005) provide a robust formulation of dynamic programming with uncertainty in
the probabilities. From their analysis it follows that the nominal dynamic program (1) under uncertainty
sets ZS can be solved using the following recursive formula:

Vt(y) = max
S⊂N

{
Φ(S)

}
. (4)

with

Φ(S) = min

∑
j∈S

pj [r̃j + Vt−1(y + 1)] + pn+1Vt−1(y − 1) + p0Vt−1(y)

∣∣∣∣∣∣ p ∈ ZS
 (5)

The uncertainty problems Φ(S) can be solved for each S independently. When Φ(S) is known for all
S, then optimisation problem (4) becomes a maximisation problem over a finite set of integers. The
challenge is to evaluate Φ(S). For this purpose, it is notationally convenient to move the formula in the
objective of (5) to the constraints, by setting the objective to minimise to t ∈ R and add the constraint∑

j∈S
pj [r̃j + Vt−1(y + 1)] + pn+1Vt−1(y − 1) + p0Vt−1(y) ≤ t.

This leads to the following equivalent optimisation problem:

min

t ∈ R

∣∣∣∣∣∣
∑
j∈S

pj [r̃j + Vt−1(y + 1)] + pn+1Vt−1(y − 1) + p0Vt−1(y)− t ≤ 0,∀p ∈ ZS

 . (6)

Define x ∈ R2, a ∈ R2, and B ∈ R2×(n+2) as follows:

x = (t, x0),

a = (−1, 0),

B =

(
0 0 · · · 0 0

Vt−1(y) r̃1 + Vt−1(y + 1) · · · r̃n + Vt−1(y + 1) Vt−1(y − 1)

)
.

Then the constraint can be rewritten to{
0 ≥ (a+Bp)>x, ∀p ∈ ZS ,
x0 = 1.

The following property from Ben-Tal et al. (2013) can now be applied.

Property 1. Theorem 4.1 in Ben-Tal et al. (2013)

Consider the linear constraint

(a+Bp)>x ≤ b, p ∈ Z, (7)

where x ∈ Rn is the vector to be optimised, a ∈ Rn, B ∈ Rn×m and b ∈ Rn are given
parameters, p ∈ Rm is the uncertain parameter, and

Z = {p ∈ Rm |p ≥ 0, Cp ≤ d, Iφ(p, q) ≤ ρ} ,
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is the uncertainty region of p with q ∈ Rm+ , ρ > 0, d ∈ Rk, and C ∈ Rk×m. Then a vector
x ∈ Rn satisfies (7) if and only if there exist η ∈ Rk and ξ ∈ R such that (x, η, ξ) satisfiesa

>x+ d>η + ρξ + ξ
∑
i

qiφ
∗
(
B>i x− C>i η

ξ

)
≤ b,

η ≥ 0, ξ ≥ 0,

where Bi and Ci are the i-th columns of B and C, respectively, and φ∗ is the conjugate
function of φ.

The robust counterpart of (6) is then given by

a>x+ d>η + ρP ξ + ξ

n∑
i=0

p̄iφ
∗
(
B>i x− C>i η

ξ

)
≤ 0,

η ≥ 0,

ξ ≥ 0.

(8)

The robust counterparts for the boundaries (last two equations of (1)) are also given by Equation (8),
where the parameters are given by

x = (t, x0),

a = (−1, 0),

B =

(
0 0

Vt−1(y) Vt−1(y − 1)

)
,

p(p0, pn+1),

and

x = (t, x0),

a = (−1, 0),

B =

(
0 0 · · · 0

Vt−1(y) r̃1 + Vt−1(y + 1) · · · r̃n + Vt−1(y + 1)

)
,

p = (p0, p1, . . . , pn),

respectively.

A tractable reformulation of the robust counterpart under the Cressie-Read divergence is given by (see
appendix of Ben-Tal et al., 2013)

a>x+ η1 − η2 + ξρP + ξ
θ

∑
i p̄i

(
(yiξ )

θ
θ−1 − 1

)
≤ 0

yi = ξ − (1− θ)(B>i x− η1 + η2), ∀i,
η ≥ 0, ξ ≥ 0.

This problem can solved using conic quadratic programming (CQP). Tractable robust counterparts for
other popular φ-divergence measures can be found in Ben-Tal et al. (2013).

The parameters of the uncertainty sets need to be estimated from data. For some parameters the
estimation procedure is trivial or already described. The parameter p̄ follows directly from the maximum
likelihood estimates, for example from the estimation procedure described in J. P. Newman et al. (2014),
Sierag et al. (2015), or Talluri and van Ryzin (2004). The parameter ρP is defined by Equation (3).

3.2 Discussion of Selected φ-Divergence Measures

Next, tractable reformulations of (8) are provided for popular choices of φ. Each measure is appropriate
in a different situation. A motivation is given when to select which measure.
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− Kullback-Leibler The Kullback-Leibler measure is

Iφkl
(p, p̄) =

∑
pi log(pi/p̄i).

This asymmetric measure punishes upward deviation of pi from p̄i and rewards downward deviation.
This measure is appropriate when the parameters are more likely to be smaller than the estimated
parameters.

− Burg Entropy The Burg entropy measure is given by

Iφb
(p, p̄) =

∑
p̄i log(pi/p̄i).

Also for this asymmetric measure it holds that it punishes upward deviation of pi from p̄i and
rewards downward deviation. The amplification of the punishment or reward is constant and
dependent on the estimation of the nominal vector p̄. The unfortunate property of this measure is
that any value of pi is feasible: pi can be as small as approximately zero, since it has a negative
contribution to Iφb

(p, p̄); and pi can be greater than p̄i, up to 1, as long as pj is small enough, for
some j 6= i.

− J-divergence The J-divergence measure leads to a φ-divergence of

Iφj (p, p̄) =
∑

(pi − p̄i) log(pi/p̄i).

This asymmetric measure punishes both upward and downward deviation of pi from p̄i. The measure
is similar to Kullback-Leibler and Burg Entropy, yet the factor pi − p̄i ensures that all deviation is
punished and none rewarded. Larger deviation is punished heavier than small deviations.

− χ2-distance The φ-divergence of the χ2-distance measure is given by

Iφc
(p, p̄) =

∑ (pi − p̄i)2

pi
.

This measure punishes larger deviations more than smaller deviations. However, upward deviation
is punishes less than downward deviation because of the 1/pi term. The punishment is relative to
the quantity of the vector p.

− Modified χ2-distance The φ-divergence of the modified χ2-distance is given by

Iφmc
(p, p̄) =

∑ (pi − p̄i)2

p̄i
.

This measure also punishes larger deviations more than smaller deviations. However, in this case
upward deviation is punished equally as downward deviation because of the p̄i. The punishment is
relative to the quantity of the nominal value p̄i.

− Hellinger distance The φ-divergence of the Hellinger distance is given by

Iφh
(p, p̄) =

∑
(
√
pi −

√
p̄i)

2.

This is the l2-norm applied to the vector (
√
p1, . . . ,

√
pn), which is a unit vector under the l2-norm.

This measure is more sensitive to changes in smaller probabilities than larger probabilities.

− χ-divergence of order θ > 1 The φ-divergence of the χ-distance of order θ > 1 is given by

Iφca
(p, p̄) =

∑
p̄i|1− pi/p̄i|θ.

This measure punishes larger deviations more than small deviations. How severe the deviations are
punished depends on the parameter θ. Larger θ punish deviations more than smaller θ.

− Variation distance The φ-divergence of the variation distance is given by

Iφv
(p, p̄) =

∑
|pi − p̄i|.

This is the l1 norm. Larger deviation is punished linearly more than smaller deviations.
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− Cressie and Read The φ-divergence for the Cressie and Read measure with parameter θ is given
by

Iφh
(p, p̄) =

1

θ(1− θ)
(1−

∑
pθi p̄

1−θ
i ).

This measure gives larger punishment to larger deviations if θ is large. For small θ the effect of
large deviations is less severe.

4 Numerical Results

In this section numerical results are provided to validate the robust solution method for the single-leg
revenue management model with cancellations and overbooking. The benchmark policy is given by the
nominal solution method described in Section 2.

The model parameters that are used are based on Simulation Example 2 in Talluri and van Ryzin (2004)
and the example used in the numerical results section of Sierag et al. (2015). These parameters are
thought to be realistic and based on observations in practice. Let n = 10 be the number of products sold
with corresponding price vector

r = (240, 220, 190, 160, 120, 112, 96, 80, 74, 70).

Demand, cancellation rates, and purchase probabilities are independent from the time period t. To allow
the study of the effect of high volume in demand and low volume in demand the load factor l is introduced.
In the studies the values l ∈ {0.6, 0.8, 1, 1.2, 1.4} are used. Demand λ per time unit is then defined as

λ(C, l, T ) =
Cl

T
.

A low value of l implies a low demand relative to the capacity C and a high value of l implies a high
demand relative to the capacity C.

Purchase probabilities are modelled by the multinomial logit model (MNL). The only attribute that is
considered is price, but it is assumed that there exist high price-sensitive and low price-sensitive customers
which have different parameters βH = −0.005 and βL = −0.0015, respectively (as in Talluri & van Ryzin,
2004, and Sierag et al., 2015). The no-purchase parameter is set to α = 0 such that the MNL model is
the same as in Talluri and van Ryzin (2004) and Sierag et al. (2015). Overbooking is allowed up to 20%
of the total capacity C (this is more for computational reasons: the policies found will almost surely not
open any product categories for sale as the overbooking is close to 20%). Cancellation rates are assumed
linear and the parameters γ ∈ Rn depend on l and T in the following way:

γ = (0.720, 0.320, 0.560, 0.280, 0.200, 0.360, 0.160, 0.080, 0.008, 0.040)
l

T

= (18/25, 8/25, 14/25, 7/25, 1/5, 9/25, 4/25, 2/25, 1/125, 1/25)
l

T
.

To evaluate the performance of both robust and nominal policies for a particular model instance, 1000
data sets are simulated. From each dataset the parameters of the model are estimated, which are used
by both solution methods. Simulation is used to estimate the revenue corresponding to a policy. The
estimation errors are between 0.1% and 0.4%.

Hotel size

First the performances of the robust solution method for different hotel sizes are compared. Moreover,
different φ-divergences are applied. The booking horizon is T = 1000 time units and the sample size is
100 arrival days. See Table 1 for the results.

The results show that the robust solution methods perform better compared to the nominal solution
method for small hotels. For larger the hotels the difference is smaller. This might be the case because
either the nominal solution performs better for larger hotels, or the robust solution methods perform

8



Hotel size
10 20 50 100 200

φ-div Rev % Rev % Rev % Rev % Rev %
Nominal 1765 3549 8908 16711 29776
TvR 1749 -0.91 3470 -2.23 8235 -7.56 15209 -8.99 26355 -11.49
Kullback-Leibler 1791 1.47 3620 2.00 8948 0.45 16793 0.49 29781 0.02
Burg Entropy 1791 1.47 3621 2.03 8945 0.42 16794 0.50 29779 0.01
J-divergence 1791 1.47 3621 2.03 8945 0.42 16792 0.48 29778 0.01
χ2-distance 1792 1.53 3619 1.97 8946 0.43 16793 0.49 29784 0.03
Modified χ2-distance 1791 1.47 3621 2.03 8946 0.43 16796 0.51 29780 0.01
Hellinger distance 1791 1.47 3620 2.00 8945 0.42 16794 0.50 29777 0.00
χ-div. of order θ = 0.5 1792 1.53 3621 2.03 8946 0.43 16793 0.49 29781 0.02
Variation distance 1791 1.47 3619 1.97 8947 0.44 16795 0.50 29783 0.02
Cressie-Read 1791 1.47 3620 2.00 8946 0.43 16790 0.47 29782 0.02

Table 1: Performance of nominal and robust solution methods for various hotel sizes.

worse for larger hotels. These results suggest that smaller hotels would relatively benefit more from using
a robust solution method than larger hotels. This is an important observation, since most of the hotels
are small and medium enterprise hotels and have a relatively small number of rooms.

The results show no significant difference in performance between the robust solution methods. Using
any robust solution method seems better than using none. For a fixed hotel size the divergences do
not show much difference. Any difference might even be a caused by the small estimation errors. Also,
whenever a divergence shows better performance for one hotel size, another divergence performs better
for another hotel size. For example, for C = 10 the χ2-divergence performs best, but for C = 20 the
divergence performs worst.

Note that the TvR approximation does not perform well, and so it does in the examples that follow. Also,
no significant different in performance of φ-divergences was found in the next examples. For convenience
only the results of the Cressie-Read divergence are compared against the nominal method, and the TvR
method is left out.

Load factor

The load factor influences the performance of the estimation method (see Sierag et al., 2015). Therefore
the robust solution method might perform different under different load factors. The parameters are
set to C = 20 and C = 100 rooms, T = 100 time periods, and the load factors that are used are
{0.6, 0.8, 1, 1.2, 1.4}. The results are presented in Table 2.

C = 20 C = 100
Load factor Nom Rob % Nom Rob %

0.6 1934 1936 0.09 9107 9106 -0.02
0.8 2539 2553 0.56 11849 11853 0.03
1.0 3082 3125 1.39 14388 14443 0.38
1.2 3546 3619 2.03 16705 16781 0.46
1.4 3966 4039 1.82 18911 18982 0.37

Table 2: Performance of nominal and robust solution methods for various load factors.

The results show that under a small load factor the performance of the nominal solution and the robust
solution are similar, while for larger load factors the robust solution outperforms the nominal solution. In
practice this means that the robust solution is preferred in popular areas or in high season, since it leads
to significantly higher profits, while outside high season or at less popular locations the robust solution
does not lead to higher profits.

9



Sample size

Now the behaviour of the solution methods according to different sample sizes is considered. One sample
consists of the data collected for one arrival day. The uncertainty set parameter ρ is evaluated accordingly.
The size of the hotel is C = 20 rooms and the booking horizon is T = 100 time periods.

C = 20 C = 100
Sample size Nom Rob % Nom Rob %

1 3434 3473 1.12 15510 15536 0.17
2 3286 3323 1.12 15472 15512 0.26
5 3482 3541 1.69 16442 16496 0.33

10 3513 3576 1.77 16646 16705 0.35
20 3542 3612 1.98 16665 16729 0.38
50 3545 3616 2.01 16690 16760 0.42

100 3546 3618 2.03 16708 16777 0.41

Table 3: Performance of nominal and robust solution methods for a hotels of size C = 20 and
C = 100 and different sample sizes.

In Table 3 the performance of the nominal and robust solution methods are provided. The results show
that the average performance of the robust solution method outperforms the nominal solution method
by 1− 2% for C = 20, increasing as the sample size increases. For C = 100 the performance is lower, up
to 0.42%.

Unknown cancellation behaviour

The robust solution method can be beneficial when the cancellation behaviour is not known. When
the cancellation parameter is equal to zero, the robust solution method can be used using this input
parameter. The robust solution method than takes into account an uncertainty around the zero vector,
which may lead to an improved result. This has been applied as follows: the hotel size is C = 20 or
C = 100 rooms, the booking horizon is T = 100 time periods, and the cancellation rate parameter is set
to 0. The results are given in Table 4.

C = 20 C = 100
Sample size Nom Rob % Nom Rob %

1 3458 3544 2.48 15176 15651 3.13
2 3408 3484 2.22 15048 15500 3.00
5 3440 3524 2.44 15176 15660 3.19

10 3430 3515 2.47 15148 15619 3.10
20 3464 3559 2.74 15185 15678 3.25
50 3466 3559 2.70 15198 15699 3.30

100 3468 3561 2.68 15205 15709 3.31

Table 4: Performance of nominal and robust solution methods for various hotel sizes.

The results show that the average performance is increased by about 2.5% for C = 20, while for C = 100
the performance even increased by about 3.25%. This strongly suggests that the robust solution method
can successfully be applied when no information about cancellation behaviour is known. This is an
important observation since knowledge on cancellations is not always available in practice.

Number of products

The performance of the solution methods may be influenced by the number of products n. The next
example shows the performance under a different number of products. The hotel size is C = 20 or
C = 100 rooms, the load factor is l = 1.2, and the booking horizon is T = 100 time periods. The results
are presented in Table 5.
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C = 20 C = 100
Number of products Nom Rob % Nom Rob %

2 3472 3529 1.65 15943 15942 -0.01
3 3558 3628 1.97 16615 16684 0.41
4 3549 3620 2.01 16708 16776 0.40
5 3547 3621 2.08 16706 16778 0.43
6 3548 3619 1.99 16709 16779 0.42
7 3548 3620 2.03 16707 16777 0.42
8 3550 3622 2.04 16709 16778 0.41
9 3546 3621 2.12 16709 16781 0.43

10 3546 3619 2.03 16707 16774 0.40

Table 5: Performance of nominal and robust solution methods for different number of prod-
ucts.

From the results it doesn’t seem that the number of products has a big impact on the performance of the
robust solution method. The robust solution method performs on average 1.65−2.12% better for C = 20,
and 0.4% for C = 100. The results show very robust revenues against different number of products, which
is preferred.

5 Concluding Remarks

Estimating parameters of a revenue management model that takes into account customer choice behaviour
is likely to lead to estimation errors. One method to improve performance is using robust optimisation
to take into account the estimation error. In this paper a robust solution method is described for the
customer choice cancellation model by Sierag et al. (2015).

The dynamic programming formulation is converted into a robust dynamic program. The uncertain
parameters, which are probabilities, are modelled using φ-divergence uncertainty sets. In the dynamic
program small minimisation problems containing the uncertain parameters have to be solved. Novel
robust optimisation methodologies from Ben-Tal et al. (2013) lead to tractable solutions for several φ-
divergence measures.

In the numerical studies it is shown that the robust solution method surprisingly performs better for
smaller hotels than for larger hotels. As a consequence this solution method is preferred for small
and medium enterprise hotels, to which most hotels belong. Also, promising results are shown when
cancellation behaviour is not known. The robust solution method outperforms the nominal solution
method by up to 2% when using estimated parameters. The performance also shows to be robust under
different number of products. The fact that the robust solution method is tractable and provides good
results make it attractive to be applied in practice.

The results in this paper can serve as a foundation for several topics further research. First, the method-
ology of this paper can be extended to network revenue management models that use choice models. The
effects of parameter estimation errors in these network models can be studied and solved using robust
optimisation. Solving network problems is not straight forward, so an intense study is necessary. Second,
an extensive study of the performance of different φ-divergence measures under different circumstances
can provide promising insights. Each φ-divergence measure includes and excludes different distances from
the estimated parameters, which may give insight to which measure is preferred in which situation.

A Introduction to Robust Linear Optimisation and φ-Divergence
Uncertainty Sets

Consider a problem that can be modelled as a linear program:

min
{
c>x |Ax ≤ b

}
,
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with c ∈ Rn the cost vector, x ∈ Rn the vector of decision variables, A ∈ Rm×n and b ∈ Rm. The robust
counterpart is given by

min
{
c>x |Ax ≤ b, A ∈ Z

}
,

with c ∈ Rn the cost vector, x ∈ Rn the vector of decision variables, A ∈ Rm×n the uncertain parameters
in uncertainty set Z ⊂ Rm×n and b ∈ Rm a constant vector. Ben-Tal et alii Ben-Tal et al. (2009) show
that without loss of generality it may be assumed that only uncertainty in A exists, and not in the
objective c or the right-hand-side b. Furthermore, Ben-Tal et al. (2009) show that the uncertainty can
be approached constraint-wise, which is of the form

(a+Bζ)>x ≤ b, ∀ζ ∈ Z,

with the nominal value a ∈ Rn constant, B ∈ Rn×m constant, b ∈ R constant, ζ ∈ Rm uncertain, and Z
the uncertainty region for ζ.

Tractable formulations of the robust counterpart for several standard uncertainty regions are provided in
Ben-Tal et al. (2009).
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