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a b s t r a c t 

A key step in data-driven decision making is the choice of a suitable mathematical model. Complex mod- 

els that give an accurate description of reality may depend on many parameters that are difficult to 

estimate; in addition, the optimization problem corresponding to such models may be computationally 

intractable and only approximately solvable. Simple models with only a few unknown parameters may 

be misspecified, but also easier to estimate and optimize. With such different models and some initial 

data at hand, a decision maker would want to know which model produces the best decisions. In this 

paper we propose a decision-based model-selection method that addresses this question. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

Model selection is the art of choosing from different math-

matical models the one that provides the best description of

 certain real-world phenomenon. Many different model selec-

ion criteria have been proposed, typically based on statistical or

nformation-theoretic notions related to ‘goodness-of-fit’ or ‘ex-

lanatory power’, while also (albeit sometimes implicitly) taking

nto account the number of parameters present in a model. 

Mathematical models play a fundamental role in data-driven

ptimization problems studied in operations research and manage-

ent science. In these problems one is not primarily interested in

btaining a good description of some aspect of reality, but rather

n identifying a good decision that maximizes a certain objective

unction. One would therefore expect that the main criterion based

pon which one selects a model in a data-driven optimization

roblem is its ability to produce good decisions. 

Perhaps surprisingly, this is not the case. Models are often se-

ected using ‘classical’ criteria related to obtaining estimates with

mall statistical distance (such as mean squared error or Kullback-

eibler divergence). But, as illustrated in Fig. 1 , small statistical dis-

ance need not at all imply that the selected model leads to good

ecisions (and the Appendix of this paper contains an example

howing that the loss of using the ‘wrong’ model selection crite-

ion can in fact be unbounded). A striking practical example of this

henomenon is given by Feldman, Zhang, Liu, and Zhang (2019) ,
∗ Corresponding author. 
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ho compare a sophisticated machine learning model to a simple

ultinomial logit (MNL) choice model, in a product display opti-

ization problem of a large online market place. They conclude: 

Our experiments show that despite the lower prediction power

of our MNL-based approach, it generates significantly higher

revenue per visit compared to the current machine learning al-

gorithm with the same set of features. 

In addition, Besbes and Zeevi (2015) and Cooper, Homem-de

ello, and Kleywegt (2015) have shown that misspecified models

ay sometimes lead to good or even better decisions than a ‘cor-

ect’ model. Thus, in data-driven optimization problems, the value

f a model should solely be judged by the quality of the decisions

t produces, and not by, e.g., ‘goodness-of-fit’. This has also been

ointed out by Besbes, Phillips, and Zeevi (2010) , who write: 

‘[...] there has long been a recognition within the decision anal-

ysis literature that the value of quantitative modeling should be

judged primarily by the quality of the decisions they support

(see, for example, Nickerson & Boyd, 1980 ). However, there has

been a lack of methodologies for evaluating the adequacy of a

particular model from this vantage point.’ 

In decision problems, model selection is typically between

omplex, ‘realistic’ models and ‘simple’ or simplified models.

 complex model, that takes into account many factors that are

hought to be relevant and important for the problem at hand, typ-

cally depends on many unknown parameters that may be difficult

o estimate accurately (especially if only limited data is available).

n addition, determining the corresponding optimal decision may

e computationally intractable, such that heuristics or simulations

ave to be used to find an (approximately) optimal solution.
sed model selection, European Journal of Operational Research, 
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Fig. 1. Although the objective function estimated by Model 1 is closer to the truth 

than that of Model 2 (measured, e.g., by their L 2 distance), the optimal decision x (2) 

corresponding to Model 2 yields a higher objective f ( x (2) ) than the optimal decision 

x (1) corresponding to Model 1. 
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A simple model that neglects important factors may be mis-

specified, but it may also involve fewer unknowns that need to

be estimated, and the associated optimization problem may be

exactly solvable. 

With two such models at hand, an important question is

whether the modeling error of the simple model outweighs the

larger estimation and optimization errors associated with the com-

plex model. A large variety of model-selection methods exists (dis-

cussed in more detail in the next section) based on statistical or

information-theoretic criteria. Although these criteria may perform

well when one wants to derive qualitative insights or make pre-

dictions, they are generally not tailored to their use in generic op-

timization problems , and thus may select a model based on the

‘wrong’ criterion as illustrated in Fig. 1 . This motivates the cur-

rent study, in which we integrate model selection with data-driven

decision problems, by proposing a concrete and generic decision-

based model-selection method. 

1.2. Literature 

Model selection. The rich field of model selection has produced

a wide variety of tools and techniques to select a model, such

as Akaike Information Criterion (AIC; Akaike, 1973 ), Bayesian

information criterion (BIC; Schwarz, 1978 ), deviance informa-

tion criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde,

2002 ), Mallows’ C p ( Mallows, 1973 ), the Minimum Description

Length principle ( Rissanen, 1978 ), Bayesian model selection and

model averaging based on Bayes factors ( Jeffreys, 1935; 1961 ),

cross-validation ( Geisser, 1975; Stone, 1974 ), and many more. For

reviews and in-depth discussions of these methods we refer to the

books and survey papers by Arlot and Celisse (2010) , Burnham and

Anderson (2002) , Claeskens and Hjort (2008) , Grünwald (2007) ,

Kass and Raftery (1995) , Lahiri (2001) , Wasserman (20 0 0) , and

Zucchini (20 0 0) . 

These model selection methods are based on statistical or

information-theoretic criteria, and generally are designed with the

aim of identifying models with small statistical distance to the un-

derlying ground truth or a good fit on future (test) data coming

from the same source. If the goal of the decision maker is to use

models to derive qualitative insights or make predictions, these cri-

teria may perform quite well. However, these criteria are not nec-

essarily aligned with the goal of selecting a model that produces

good decisions. This observation, that a model selection method
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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hould be aligned with the purpose for which the model is used,

s also made by Claeskens and Hjort (2003) : 

‘The idea of finding a single satisfactory statistical model for

one’s data, perhaps aided by the model information criteria dis-

cussed previously, is a central one in statistics, and carries with

it considerable intellectual and conceptual appeal. The chosen

model is fitted to data and is seen as the statistician’s best

approximation to the real data generating mechanism used by

nature, and secures a coherent view of statistical analysis of a

dataset. In this article we carefully extricate ourselves from this

classic point of view; that a single model should be used to ex-

plain all aspects of data or to predict all types of future data

points seems to us a little too constrained. Our view is that

such a “best model” should depend on the parameter under

focus.’ 

Claeskens and Hjort (2003) proceed by proposing a method, the

ocused Information Criterion (FIC), aimed at selecting a model

hat gives good precision for estimating a certain parameter of in-

erest. The idea of FIC is to estimate the mean squared error of the

arameter of interest for each available model, and then select a

odel for which this estimate is minimal. The method proposed

n the present paper is different from FIC, but it is inspired by

he same philosophy that model selectors should be aligned with

he purpose for which the models are used (in our case: producing

ood decisions). 

Statistical learning theory. Statistical learning theory ( Bousquet,

oucheron, & Lugosi, 2004; Hastie, Tibshirani, & Friedman, 2009;

apnik, 1998; 20 0 0 ) addresses questions that are closely related to

odel selection. The main goal in this field is to construct a pre-

iction function 

ˆ f : X → Y that provides a good description of the

elation between an input random variable X with support X and

n output random variable Y with support Y . The joint distribution

f ( X , Y ) is unknown, but data consisting of i.i.d. realizations ( x i ,

 i ) 1 ≤ i ≤ n of ( X , Y ) is available. The quality of a predictor ˆ f is mea-

ured by the risk R ( ̂  f ) := E [ L (Y, ˆ f (X ))] , where the so-called loss

unction L : Y 

2 → [0 , ∞ ) quantifies the error between Y and the

redicted 

ˆ f (X ) . As described in Bousquet et al. (2004) and Guyon,

affari, Dror, and Cawley (2010) , the main methods to determine

 good predictor (empirical risk minimization, structural risk min-

mization, regularization methods) are based on the idea of mini-

izing the empirical risk 
∑ n 

i =1 L (y i , ˆ f (x i )) over some class G ⊂ Y 

X 

f predictors, possibly augmented with a term that penalizes the

model complexity’ of ˆ f . Selecting G can be seen as a model selec-

ion problem. 

The framework is quite general - covering, for example, clas-

ification, regression, and density estimation problems - but is in

everal regards different from the setting considered in this pa-

er. First, we do not make the assumption that x 1 , . . . , x n are i.i.d.

ealizations from a random X . Second, as outlined in Section 2.1 ,

e are solely interested in estimating a maximizer of the function

f (x ) := E [ r (X, Y ) | X = x ] for some known r : X × Y → R , instead

f the ‘full’ relation between X and Y . For many problems, e.g. the

ssortment optimization problem considered in Section 4.1 , it is

nclear if (at all) it is possible to put this into the framework de-

cribed above. 

Bayesian model averaging. Bayesian model selection techniques

hare the same drawbacks as frequentists’ approaches, in that

hey decouple model selection from a particular optimization

roblem at hand. Bayesian model averaging ( Kass & Raftery, 1995;

asserman, 20 0 0 ), however, is an approach that can connect

ptimization problems to the availability of different models. The

ain idea of Bayesian model averaging is not to select a single

odel from available alternatives, but to maintain a probability
sed model selection, European Journal of Operational Research, 
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istribution that each of the given models is correct, and use this

robability distribution in all further derivations. 

In data-driven optimization problems, such an approach could

ook as follows. Let M 0 , . . . , M K be K + 1 models that may have

enerated a given data set D , let each model M k have an associ-

ted parameter θ k living in a space �k ⊂�, let X be a space of

easible decisions, and let r : X × � → R be a reward function. Let

 ( θ k | M k ) be a prior on the parameter θ k ∈ �k , and let p ( M k ) be a

rior on the probability that model M k is correct, for k = 0 , . . . , K.

 fully Bayesian approach to maximize the reward, in the spirit of

ayesian model averaging and thus without first selecting a model,

onsists of maximizing the function 

 �→ 

K+1 ∑ 

k =0 

∫ 
θk ∈ �k 

r(x, θk ) p(θk | D, M k ) p(M k | D )d θk , (x ∈ X ) , (1) 

here p(θk | D, M k ) = p(D | θk , M k ) p(θk | M k ) /p(D | M k ) is the pos-

erior of θ k , p ( D | θ k , M k ) is the likelihood of the data given param-

ter value θ k and model M k , p(D | M k ) = 

∫ 
θk ∈ �k 

p(D | θk , M k ) p(θk |
 k )d θk is the evidence for model M k , and p(M k | D ) = p(D |
 k ) p(M k ) / 

∑ K 
l=0 p(D | M l ) p(M l ) is the posterior probability that

odel M k is correct, given data D . 

Apart from the computational difficulties that solving (1) could

nvolve (which could introduce further optimization errors), a main

ifference between this and our approach is that we do not (im-

licitly) assume that each of the available models is ‘correct’ with

ome (positive) probability. Even if it is known beforehand that a

ertain model M k is incorrect and could never have generated the

ata, i.e. p(M k ) = 0 , it still could produce better decisions than a

orrectly specified model. This aspect is not captured in this ap-

roach. 

Somewhat related is the literature on inconsistent (Bayesian)

nference with misspecified models (see Grünwald and van Om-

en, 2014; Watson and Holmes, 2016 , and the references therein),

hich blends Bayesian methods with statistical learning theory.

imilar to the statistical learning theory literature discussed above,

hese papers differ, among other things, from our framework by

ssuming i.i.d. decisions and a different structural form of the loss

unction. 

Bridging model selection and data-driven optimization. Several

ecent studies in the operations research and management sci-

nce literature consider aspects of model selection in conjunc-

ion with data-driven optimization problems. For example, Besbes

t al. (2010) design and analyze a hypothesis test to discrim-

nate between models based on the quality of decisions they

roduce; Chu, Shanthikumar, and Shen (2008) , Lim, Shanthiku-

ar, and Shen (2006) , Liyanage and Shanthikumar (2005) , and

amamurthy, Shanthikumar, and Shen (2012) argue for integrating

stimation, optimization, and model uncertainty in data-driven op-

imization problems; and Besbes and Zeevi (2015) , Cachon and Kök

2007) , Cooper and Li (2012) , Cooper, Homem-de Mello, and Kley-

egt (2006) , Cooper et al. (2015) , and Lee, Homem-de Mello, and

leywegt (2012) study the quality of decisions under misspecified

odels in pricing, revenue management, and inventory optimiza-

ion problems. 

The notion that model selection methods should be aligned

ith their purpose of producing good decisions is implicitly

resent in some recent studies. Bastani and Bayati (2016) , for ex-

mple, consider a linear multi-armed bandit problem with high-

imensional covariates, and adaptively tune the regularization pa-

ameter of the LASSO estimator ( Tibshirani, 1996 ) in order to

chieve optimal asymptotic reward. Since this regularization pa-

ameter is a measure of model complexity, their method can be

een as an example of adapting a model selection method to

he purpose of generating good decisions. A similar idea appears

n Vahn, El Karoui, and Lim (2014) , who enhance a data-driven
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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ortfolio optimization problem by a regularization parameter that

ounds the sample variance of the estimated objective function.

he regularization parameter is optimized by a variant of k -fold

ross-validation, where the validation step is based on a perfor-

ance metric relevant to investment problems. Although this pa-

er is not directly about model selection, it can again be seen as

n example where model selection techniques are tuned in order

o maximize the objective function of a data-driven optimization

roblem. 

Kao and Van Roy (2014) (cf. Kao & Van Roy, 2013 ) consider a

uadratic optimization problem, the solution of which depends on

n unknown covariance matrix � of a Gaussian random variable.

he authors discuss various regularized maximum likelihood esti-

ators with regularization parameter tuned via cross-validation. In

ddition, they propose to estimate � by maximizing the in-sample

erformance of the objective function, subject to a lower-bound

n the posterior probability of � to mitigate overfitting. Thus, the

stimator of the unknown parameter is adapted to take the deci-

ion objective into account. A similar idea is considered by Kao,

an Roy, and Yan (2009) , who estimate an unknown parameter

f a quadratic function by a convex combination of ordinary least

quares and empirical loss minimization, and who choose this con-

ex combination while taking into account the goal of maximizing

he objective function. 

.3. Contributions 

This paper proposes a model-selection method that evaluates

odels based on the quality of the decisions they produce. The key

dea of the approach, named dbms after decision-based model se-

ection, is to use a resampling procedure to estimate which of the

ecisions suggested by different models gives the highest reward.

he method is applicable to a wide class of data-driven decision

roblems, is not computationally intensive, and does not depend

n some hyper-parameter that is difficult to tune. Conceptually, it

onnects the fields of model selection and data-driven optimiza-

ion. Our numerical results are encouraging, while also suggesting

hat there still is room for further improvement. 

The main practical insight for managers or practitioners who

ork with models and data is that one does not have to confine

neself to using either simple and misspecified or complex and in-

ractable models: one can (and in fact: should) use both, together

ith a method such as dbms that predicts which model produces

he best decision given the data set at hand. 

Our numerical results also reveal that it is in general quite hard

o conclude which model selection method is ‘the best’. In the

ssortment optimization problem considered in Section 4.1 , dbms

s much better than AIC when model M 

(1) is clearly misspecified,

hile AIC is better than dbms when model M 

(1) is (near)correct. In

he newsvendor optimization problem considered in Section 4.2 ,

 similar conclusion holds: dbms is better than cross-validation

hen model M 

(1) is clearly misspecified, while cross-validation is

etter than dbms when M 

(1) is correctly specified. From a prac-

ical point of view, conducting numerical simulations or real-life

xperiments to evaluate the performance of different models (as

n Feldman et al., 2019 ) might be insightful. From a theoretical

oint of view, it would be useful to derive worst-case performance

ounds for different model selection methods, accompanied by

ower bounds on the best achievable performance of any model

election method. Our analysis in Section 3.1 suggests that a

eneral analysis of this kind might be technically challenging.

owever, in particular problem instances (such as newsvendor

ptimization), deriving informative upper and lower bounds on

he performance of model selection methods might be feasible.

his is left as an interesting direction for future research. 
sed model selection, European Journal of Operational Research, 
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1.4. Organization of the paper 

The rest of this paper is organized as follows. Section 2 de-

scribes the formal decision-making framework that we consider,

and contains our decision-based model-selection criterion dbms . In

Section 3 we explain the intuition behind dbms , discuss a few al-

ternatives, prove that dbms is reward-consistent, and comment on

several other aspects of dbms . Section 4 contains two numerical

illustrations, on an assortment optimization problem and on the

newsvendor problem, and Section 5 ends the paper with a few

concluding remarks. The supplementary material in the appendix

shows, by means of an example, that unbounded losses may be

incurred when model selection is not based on optimizing the ob-

jective function. 

2. Decision-based model selection 

2.1. Mathematical framework of decision-making 

Consider a decision maker who tries to determine a decision

or action x in an action space X that maximizes her expected re-

ward E [ r (x, Y (x ))] , where { Y (x ) | x ∈ X } is a collection of (possi-

bly multivariate) random variables with common support Y, and

r : X × Y → R is a known function called the reward function . The

distributions of Y ( x ) ( x ∈ X ) are unknown to the decision maker,

but a data set d 0 = (x 1 , y 1 , . . . , x n , y n ) , n ∈ N , consisting of previ-

ously used actions x i ∈ X and realizations y i of Y ( x i ) ( i = 1 , . . . , n )

is available. To determine her data-driven decision, the decision

maker uses a model , an estimator , and an optimization algorithm . 

A model is a set of the form 

M = { F x,θ ∈ F | x ∈ X , θ ∈ �} , 
where F is the set of cumulative distribution functions (cdfs) on

Y, and � is a non-empty and possibly infinite-dimensional set.

A model is called correctly specified if there is a unique θ ∗ ∈ �

such that, for all x ∈ X , F x,θ∗ is the cdf of Y ( x ); θ ∗ is then called

the true parameter. An estimator is a function τ : (X × Y) n → �

that maps data to parameter values. An optimization algorithm

is a function χ : � → X that maps parameter values to deci-

sions. In data-driven decision problems, χ ( θ ) typically maximizes∫ 
Y r (x, y ) d F x,θ (y ) with respect to x ∈ X , for all θ ∈ �; in this case

χ is called exact . In many optimization problems, however, maxi-

mizing 
∫ 
Y r (x, y ) d F x,θ (y ) is intractable, and χ is an heuristic or ap-

proximate optimal solution. If a single model M with correspond-

ing estimator τ and optimization algorithm χ is at hand, then the

decision maker uses action χ ( τ ( d 0 )). 

2.2. Decision-based model-selection criterion 

We consider the case where multiple models

M 

(0) , M 

(1) , . . . , M 

(K) are available ( K ∈ N ), each of the form 

M 

(k ) = { F (k ) 
x,θ

∈ F | x ∈ X , θ ∈ �(k ) } , k = 0 , 1 , . . . , K, 

and each with corresponding estimator τ ( k ) and optimization algo-

rithm χ ( k ) . Model M 

(0) is called the ‘true model’ and is correctly

specified with true (but unknown) parameter θ ∗ (For a discus-

sion about this assumption, see Section 3.4 ). The other models are

considered simplifications, and may be misspecified. The decision

maker knows that model M 

(0) is correctly specified. 

Let x ( k ) := χ ( k ) ( τ ( k ) ( d 0 )) denote the decision suggested by model

k ( k = 0 , 1 , . . . , K). The decision maker needs to determine the

model k for which x ( k ) gives the highest expected reward; i.e. she

needs to estimate 

arg max 
k ∈{ 0 , 1 , ... ,K} 

r(x (k ) , θ ∗) , (2)
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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here we write 

(x, θ ) := 

∫ 
Y 
r (x, y ) d F (0) 

x,θ
(y ) 

or the expected reward under model M 

(0) as function of x and θ . 

Observe that simply replacing θ ∗ by τ (0) ( d 0 ) in (2) is not in-

ormative: if χ (0) is exact, then we have r ( x (0) , τ (0) ( d 0 )) ≥ r ( x ( k ) ,
(0) ( d 0 )) by definition , for all k = 1 , . . . , K. 

Our idea is to estimate (2) by a resampling procedure, as fol-

ows: construct a new data set d r = (x 1 , y 
r 
1 , . . . , x n , y 

r 
n ) - the sub-

superscript ‘ r ’ refers to ‘resampled’ - with the same covariates x i 
s in d 0 , but with the observations y i replaced by random samples

 

r 
i 

drawn according to their estimated cdf F (0) 

x i ,τ
(0) (d 0 ) 

( i = 1 , . . . , n ).

e subsequently estimate (2) by replacing the true parameter θ ∗

y its estimate based on the resampled data : 

rg max 
k ∈{ 0 , 1 , ... ,K} 

r(x (k ) , τ (0) (d r )) . (DBMS)

n case of a tie, we select the maximizer with the smallest k . 

. Discussion and analysis 

.1. Intuition behind DBMS 

In this section we provide an intuition behind dbms . To this

nd, we introduce some notation: we write Y ( x , θ ) for the random

ariable with cdf F (0) 
x,θ

, and D (θ ) = (x 1 , Y (x 1 , θ ) , . . . , x n , Y (x n , θ ))

or the random data vector as function of θ . We write θk =
(k ) (D (θ ∗)) for the parameter estimate under model M 

( k ) (viewed

s a random variable), and θr = τ (0) (D (θ0 )) for the parameter es-

imate based on the resampled data set. Note that we can regard

he initial data set d 0 as a realization of D ( θ ∗), and the resampled

ata set d r as a realization of D ( θ0 ). 

We first explain in Section 3.1.1 why misspecified models may

ield better decisions than the correct model. Next, in Section 3.1.2 ,

e study several structural properties of dbms by means of an ex-

mple that involves two models. In this example, we show how

he probability that the misspecified model outperforms the cor-

ect model, the corresponding expected performance gain, and the

robability that dbms selects the misspecified model are related

o the variance of the estimator under M 

(0) and to the expected

ain or loss under the misspecified model. We also obtain an ex-

licit expression for the performance of dbms . In Section 3.1.3 we

iscuss the difficulties of extending these insights to more general

ecision problems. 

.1.1. Better decisions by a misspecified model. 

For ease of exposition we assume that there are only two mod-

ls under consideration: a correctly specified model M 

(0) and a

ossibly misspecified model M 

(1) . In addition suppose that X , �(0) 

nd �(1) are metric spaces, the function x �→ r ( x , θ ∗) is globally Lip-

chitz continuous on X with unique maximizer x ∗ ∈ X , the algo-

ithm χ (0) is exact, the function χ(1) : �(1) → X is globally Lip-

chitz continuous, and there are constants c 0 > 0 and ω > 0 such

hat estimation error and performance loss of model M 

(0) are re-

ated in the following way: 

(χ (0) (θ ∗) , θ ∗) − r(χ (0) (θ ) , θ ∗) ≥ c 0 || θ ∗ − θ || ω for all θ ∈ �(0) . 

e define the regret under model M 

( k ) , denoted by Regret ( k ) , as the

xpected performance loss caused by using decision x ( k ) instead of

he optimal decision x ∗. It follows that the regret under model M 

( 0 ) 

atisfies 

egret (0) = E [ r(x ∗, θ ∗) − r(x (0) , θ ∗)] 

≥ c 0 E [ || θ ∗ − θ0 || ω ] , (3)
sed model selection, European Journal of Operational Research, 
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here the expectation is taken with respect to the distribution of

he initial data D ( θ ∗). Define the misspecification loss of model

 

(1) by 

(1) := min 

θ∈ �(1) 

{
r(x ∗, θ ∗) − r(χ (1) (θ ) , θ ∗) 

}
, 

nd, for ease of exposition, suppose that there is a unique ˜ θ ∈ �(1) 

here this minimum is achieved. The Lipschitz conditions on r and
(1) imply that there is constant c 1 > 0 such that 

egret (1) = E [ r(x ∗, θ ∗) − r(x (1) , θ ∗)] 

= �(1) + E [ r(χ (1) ( ̃  θ ) , θ ∗) − r(χ (1) (θ1 ) , θ
∗)] 

≤ �(1) + c 1 E [ || ̃  θ − θ1 || ] . (4) 

y comparing (3) and (4) it becomes clear why a misspecified

odel may yield better decisions than a correctly specified model.

n particular, if the estimation error of model M 

(0) , measured by

he expression on the righthandside of (3) , is larger than the sum

f the misspecification error and estimation error of model M 

(1) ,

easured by the two respective terms in Eq. (4) , then x (1) has

ower regret than x (0) and thus model M 

(1) is preferable from a

ecision-making perspective, even if this model is misspecified. It

s worth emphasizing that this discussion assumes that χ (0) is ex-

ct. Optimization errors in the algorithm corresponding to model

 

(0) can be another source of why a misspecified model performs

etter than a well-specified model. 

.1.2. Properties of DBMS in an example. 

We now explain key properties of dbms by means of an exam-

le. Suppose that X = R , �(0) = R , and r(x, θ ) = −(x − θ ) 2 for all

(x, θ ) ∈ R 

2 . Data of the form ( x i , y i ), i = 1 , . . . , n, n ∈ N , is available,

here x 1 , . . . , x n ∈ R are not all zero, y i = θ ∗x i + εi (i = 1 , . . . , n ) ,
∗ ∈ R is the true but unknown parameter, and ε1 , . . . , εn are

.i.d. standard normally distributed random variables. The decision

aker again considers two models. In model M 

(0) , she (correctly)

ssumes that y i ∼ N ( θx i , 1), for some θ ∈ R and all i = 1 , . . . , n ; she

stimates the unknown parameter by ordinary least squares, i.e.

0 = ( 
∑ n 

i =1 x 
2 
i 
) −1 

∑ n 
i =1 x i y i , and uses the exact algorithm χ(0) (θ ) =

for all θ ∈ R ; that is, the decision x (0) corresponding to model

 

(0) is given by x (0) := θ0 . In the simplified model M 

(1) , the de-

ision maker simply assumes θ ∗ = θ1 for some fixed θ1 ∈ R , with

orresponding decision x (1) = θ1 , and �(1) := { θ1 }. (This represents

he situation that θ1 has a much smaller variance than θ0 ). 

Let v := ( 
∑ n 

i =1 x 
2 
i 
) −1 , and observe that θ0 is normally dis-

ributed with mean θ ∗ and variance v . In what follows, we treat v
s a variable and show how v influences the performance of both

odels M 

(0) and M 

(1) , and the performance of dbms . To that end,

efine the sets 

 0 := { θ ∈ �(0) : r(x (0) , θ ) ≥ r(x (1) , θ ) } , 
 1 := { θ ∈ �(0) : r(x (0) , θ ) < r(x (1) , θ ) } . 
bserve that these sets are random, since they depend (via θ0 ) on

1 , . . . , εt . In addition, let 

0 := E 

[ 
max 
x ∈X 

r(x, θ ∗) − r(x (0) , θ ∗) 
] 
, 

1 := E 

[ 
max 
x ∈X 

r(x, θ ∗) − r(x (1) , θ ∗) 
] 
, 

e the regret corresponding to model M 

(0) and model M 

(1) , and

et 

(v ) := E [ r(x (1) , θ ∗) − r(x (0) , θ ∗)] 

e the expected gain of using model M 

(1) instead of model M 

(0) , as

unction of v . In what follows, we write P v ( ·) and E v [ ·] to denote

robabilities and expectations that depend on v . In the example

e consider, � = v and � = −(θ − θ ∗) 2 . 
0 1 1 
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In this section we prove four propositions with structural prop-

rties and the performance of dbms in this problem. Our first re-

ult shows that both the probability that M 

(1) outperforms M 

(0) ,

nd the corresponding expected performance gain, are increasing

n v , but decreasing in �1 . 

roposition 1. Both P v ( θ ∗ ∈ S 1 ) and �(v ) are increasing in v but

ecreasing in �1 . 

roof. Since �1 = (x (1) − θ ∗) 2 , we have 

 v ( θ
∗ ∈ S 1 ) = P v 

(
r(x (0) , θ ∗) < r(x (1) , θ ∗) 

)
= P v 

(
(θ0 − θ ∗) 2 > �1 

)
= 1 −

∫ θ ∗+ 
√ 

�1 

θ ∗−
√ 

�1 

1 √ 

2 πv 
exp 

(
−(y − θ ∗) 2 

2 v 

)
dy 

= 1 −
∫ (θ ∗+ 

√ 

�1 ) / v 

(θ ∗−
√ 

�1 ) / v 

1 √ 

2 π
exp 

(
−(y − θ ∗) 2 

2 

)
dy, 

nd 

(v ) = E v [ r(x (1) , θ ∗) − r(x (0) , θ ∗)] 

= −�1 + E v [(θ0 − θ ∗) 2 ] 

= −�1 + v . 

t follows that both P v ( θ ∗ ∈ S 1 ) and �(v ) are increasing in v but

ecreasing in �1 . �

The resampled data sets that dbms constructs is of the form

 r = (x i , y 
r 
i 
) 1 ≤i ≤n , where y r 

1 
, . . . , y r n ∼ N(θ0 , 1) . As a result, condi-

ionally on θ0 , the estimate θr = ( 
∑ n 

i =1 x 
2 
i 
) −1 

∑ n 
i =1 x i y 

r 
i 

based on re-

ampled data is normally distributed with mean θ0 and variance v .
Our next result shows that the probability that dbms selects

odel M 

(1) is increasing (and in fact differentiable) in v . 

roposition 2. The function (0 , ∞ ) � v �→ P v ( θr ∈ S 1 ) is increasing

nd differentiable in v . 

roof. Let � and ϕ denote the cdf and pdf of the standard normal

istribution. For all t > x (1) it holds that 

 v ( θr ∈ S 1 | θ0 = t ) = P v 
(
−(t − θr ) 

2 < −(x (1) − θr ) 
2 | θ0 = t 

)
= P v 

(
t 2 − (x (1) ) 2 > 2(t − x (1) ) θr | θ0 = t 

)
= P v 

(
θr < (t + x (1) ) / 2 | θ0 = t 

)
= �((x (1) − t) / (2 

√ 

v )) , (5) 

ince (θr − t) / 
√ 

v conditional on θ0 = t is standard normally dis-

ributed, and for all t < x (1) , 

 v ( θr ∈ S 1 | θ0 = t ) = P v 
(
−(t − θr ) 

2 < −(x (1) − θr ) 
2 | θ0 = t 

)
= P v 

(
t 2 − (x (1) ) 2 > 2(t − x (1) ) θr | θ0 = t 

)
= P v 

(
θr > (t + x (1) ) / 2 | θ0 = t 

)
= 1 − �((x (1) − t) / (2 

√ 

v )) . (6) 

s a result, 

 v ( θr ∈ S 1 ) 

= 

∫ x (1) 

−∞ 

(
1 − �

(
x (1) − t 

2 

√ 

v 

))
· 1 √ 

2 πv 
exp 

(
− (t − θ ∗) 2 

2 v 

)
dt 

+ 

∫ ∞ 

x (1) 

�

(
x (1) − t 

2 

√ 

v 

)
· 1 √ 

2 πv 
exp 

(
− (t − θ ∗) 2 

2 v 

)
dt 

= 

∫ (x (1) −θ ∗) / 
√ 

v 

−∞ 

(
1 − �

(
x (1) − θ ∗

2 

√ 

v 
− y/ 2 

))
· 1 √ 

2 π
exp 

(
−y 2 

2 

)
dy

+ 

∫ ∞ 

(x (1) −θ ∗) / 
√ 

v 
�

(
x (1) − θ ∗

2 

√ 

v 
− y/ 2 

)
· 1 √ 

2 π
exp 

(
−y 2 

2 

)
dy, 
sed model selection, European Journal of Operational Research, 
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where we used the variable substitution y = (t − θ ∗) / 
√ 

v . Write

c := x (1) − θ ∗. By Leibniz’s rule for differentiation under the inte-

gral sign, it follows that P v ( θr ∈ S 1 ) is differentiable in v , for v > 0 ,

with derivative equal to 

d 

dv 
P v ( θr ∈ S 1 ) = − 1 

2 
cv −3 / 2 ( 1 − �( 0 ) ) · 1 √ 

2 π
exp 

(
− c 2 

2 v 

)
dy 

+ 

∫ c/ 
√ 

v 

−∞ 

d 

dv 

(
1 − �

(
c 

2 
√ 

v 
− y/ 2 

))
· 1 √ 

2 π
exp 

(
− y 2 

2 

)
dy 

+ 

1 

2 
cv −3 / 2 �(0) · 1 √ 

2 π
exp 

(
− c 2 

2 v 

)

+ 

∫ ∞ 

c/ 
√ 

v 

d 

dv 
�

(
c 

2 
√ 

v 
− y/ 2 

)
· 1 √ 

2 π
exp 

(
− y 2 

2 

)
dy 

= 

∫ c/ 
√ 

v 

−∞ 

ϕ 

(
c 

2 
√ 

v 
− y/ 2 

)
· c 

4 
v −3 / 2 · 1 √ 

2 π
exp 

(
− y 2 

2 

)
dy 

−
∫ ∞ 

c/ 
√ 

v 
ϕ 

(
c 

2 
√ 

v 
− y/ 2 

)
· c 

4 
v −3 / 2 · 1 √ 

2 π
exp 

(
− y 2 

2 

)
dy. 

By application of the following claim, with γ = c/ 
√ 

v , ˜ ϕ = ϕ, and
˜ f (y ) = 

1 
4 v 

−1 1 √ 

2 π
exp (−y 2 / 2) for all y ∈ R , the statement of the

proposition follows. 

Claim. Let ˜ ϕ : R → [0 , ∞ ) and 

˜ f : R → [0 , ∞ ) be symmetric uni-

modal continuous functions with maximum attained at zero. Then,

for all γ ∈ R , 

γ

∫ γ

−∞ 

˜ ϕ ((γ − y ) / 2) ̃  f (y ) dy ≥ γ

∫ ∞ 

γ
˜ ϕ ((γ − y ) / 2) ̃  f (y ) dy. 

Proof of Claim. Suppose that γ ≥ 0. Then ˜ ϕ (x/ 2) = ˜ ϕ (−x/ 2) and
˜ f (γ − x ) ≥ ˜ f (γ + x ) for all x ≥ 0. By substitution of variables, we

obtain 

γ

∫ γ

−∞ 

˜ ϕ ((γ − y ) / 2) ̃  f (y ) dy = γ

∫ ∞ 

0 

˜ ϕ (x/ 2) ̃  f (γ − x ) dx 

≥ γ

∫ ∞ 

0 

˜ ϕ (−x/ 2) ̃  f (γ + x ) dx 

= γ

∫ ∞ 

γ
˜ ϕ ((γ − y ) / 2) ̃  f (y ) dy. 

Now suppose that γ < 0. Then ˜ ϕ (x/ 2) = ˜ ϕ (−x/ 2) and 

˜ f (γ − x ) ≤
˜ f (γ + x ) for all x ≥ 0. By substitution of variables, we obtain 

γ

∫ γ

−∞ 

˜ ϕ ((γ − y ) / 2) ̃  f (y ) dy = γ

∫ ∞ 

0 

˜ ϕ (x/ 2) ̃  f (γ − x ) dx 

≥ γ

∫ ∞ 

0 

˜ ϕ (−x/ 2) ̃  f (γ + x ) dx 

= γ

∫ ∞ 

γ
˜ ϕ ((γ − y ) / 2) ̃  f (y ) dy. 

This completes the proof of the claim. �

Propositions 1 and 2 show that both the probability that dbms

selects M 

(1) , as well as the expected corresponding performance

gain �(v ) , are increasing in v . Since �(v ) = v − �1 is strictly in-

creasing in v , we can also define the probability of selecting M 

(1) 

as a function of the performance gain �, as follows. 

p(�) := P �−�1 
( θr ∈ S 1 ) , for � ∈ (−�1 , ∞ ) . 

Our next result shows that p ( �) is increasing and differentiable

in �, and provides explicit expressions for the limiting probabili-

ties as � ↓ −�1 or �→ ∞ . 

Proposition 3. The function p is increasing and differentiable on

(−�1 , ∞ ) . In addition, if �1 = 0 then p(�) = arctan (2) /π for all

�∈ ( �1 , ∞ ), and if �1 > 0, then 

lim 

�↓−�1 

p(�) = 0 , and 
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lim 

�→∞ 

p(�) = arctan (2) /π ≈ 0 . 3524 

roof. That p ( · ) is increasing and differentiable on (−�1 , ∞ ) fol-

ows immediately from Proposition 2 . To prove the other state-

ents of the proposition, let Z 1 , Z 2 be independent standard nor-

ally distributed random variables. For all t > x (1) , Eq. (5) implies 

 v ( θr ∈ S 1 | θ0 = t ) = P v 
(
Z 1 ≤ (x (1) − t) / 2 

√ 

v 
)

= P v 

(
Z 1 ≥

∣∣∣∣ t − x (1) 

2 

√ 

v 

∣∣∣∣
)

= P v 

(
Z 1 ≥

∣∣∣∣ t − θ ∗

2 

√ 

v 
+ 

θ ∗ − x (1) 

2 

√ 

v 

∣∣∣∣
)

, 

nd for all t < x (1) , Eq. (6) implies 

 v ( θr ∈ S 1 | θ0 = t ) = P v 
(
Z 1 ≥ (x (1) − t) / 2 

√ 

v 
)

= P v 

(
Z 1 ≥

∣∣∣∣ t − x (1) 

2 

√ 

v 

∣∣∣∣
)

= P v 

(
Z 1 ≥

∣∣∣∣ t − θ ∗

2 

√ 

v 
+ 

θ ∗ − x (1) 

2 

√ 

v 

∣∣∣∣
)

. 

ince (θ0 − θ ∗) / 
√ 

v is standard normally distributed, it follows

hat 

 v ( θr ∈ S 1 ) = P v 

(
Z 1 ≥

∣∣∣Z 2 + c v 

2 

∣∣∣), 

here we write 

 v := 

θ ∗ − x (1) 

√ 

v 
. 

uppose �1 = 0 . Then c v = 0 for all v > 0 , and therefore

 v ( θr ∈ S 1 ) = P v ( Z 1 ≥ | Z 2 / 2 | ) = arctan (2) /π for all v > 0 . 

Now suppose that �1 > 0. Then c v � = 0 for all v > 0 ,

im v ↓ 0 | c v | = ∞ and lim v →∞ 

c v = 0 , and hence lim v ↓ 0 P v ( θr ∈ S 1 ) =
 and lim v →∞ 

P v ( θr ∈ S 1 ) = P v ( Z 1 ≥ | Z 2 / 2 | ) = arctan (2) /π . �

Proposition 3 shows that dbms satisfies a key structural prop-

rty of model selection methods: the probability of selecting the

potentially misspecified) model M 

(1) is increasing in the result-

ng performance gain �. In addition, when the performance gain is

inimal ( � ↓ −�1 ) , dbms correctly selects model M 

(0) with prob-

bility one. Interestingly, if model M 

(1) happens to be correctly

pecified, then the probability of selecting model M 

(1) is indepen-

ent of v in this example. 

Let Z 1 , Z 2 be independent standard normally distributed ran-

om variables. The probability that dbms selects model M 

(1) can

lso be written as 

 v ( θr ∈ S 1 ) = P v ( Z 1 ≥ | (Z 2 + c v ) / 2 | ) = P v ( Z 1 ≥ | (Z 2 + | c v | ) / 2 | ) 
= P v 

(
2 Z 1 ≥ | Z 2 + 

√ 

�1 / �0 | 
)
, 

here the first equality is shown in the proof of Proposition 3 , the

econd equality follows by Z 2 
d = −Z 2 , and the third equality follows

y �0 = E v [(θ0 − θ ∗) 2 ] = v . Observe that P v ( 2 Z 1 ≥ | Z 2 + x | ) is dif-

erentiable in x , for x > 0, with 

d 

dx 
P v ( 2 Z 1 ≥ | Z 2 + x | ) = 

d 

dx 

∫ ∞ 

0 

∫ −x +2 z 1 

−x −2 z 1 

ϕ (z 2 ) ϕ (z 1 ) dz 2 dz 1 

= 

∫ ∞ 

0 

{−ϕ(−x + 2 z 1 ) + ϕ(−x − 2 z 1 ) } ϕ(z 1 ) dz 1 

= 

∫ ∞ 

0 

{ ϕ(x + 2 z 1 ) − ϕ(x − 2 z 1 ) } ϕ(z 1 ) dz 1 

< 0 , 

here ϕ is the pdf of the standard normal distribution, and where

he third equality follows by symmetry of ϕ. It follows that the
sed model selection, European Journal of Operational Research, 
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l  
robability that dbms selects model M 

(1) is a decreasing function

f the ratio �1 / �0 . 

A similar monotonicity property holds for the probability that

odel M 

(1) outperforms M 

(0) . From the proof of Proposition 1 we

btain 

 v ( θ
∗ ∈ S 1 ) = P v 

(
(θ0 − θ ∗) 2 > �1 

)
= P v 

(
Z 2 1 > �1 / v 2 

)
= P v 

(
Z 2 1 > �1 / �

2 
0 

)
, 

hich clearly is decreasing in �1 / �
2 
0 
. In contrast to P v ( θr ∈ S 1 ) ,

 v ( θ ∗ ∈ S 1 ) is monotone in �1 / �
2 
0 

instead of �1 / �0 . 

The next proposition gives an exact expression for the perfor-

ance of dbms . 

roposition 4. Let x ( DBMS ) := x (0) 1 { θr ∈ S 0 } + x (1) 1 { θr ∈ S 1 } . Let Z

e a standard normally distributed random variables, and let � de-

ote its cdf. Then 

 v [(x ( DBMS ) − θ ∗) 2 ] = �0 · E 

[ 

Z 2 �

( 

| Z + 

√ 

�1 / �0 | 
2 

) ] 

+ �1 · E 

[ 

1 − �

( 

| Z + 

√ 

�1 / �0 | 
2 

) ] 

. 

roof. Let Z 1 , Z 2 be standard normally distributed random vari-

bles with pdf ϕ and cdf �. Let c v := (θ ∗ − x (1) ) / 
√ 

v . For all t ∈ R , 

 v [(x ( DBMS ) − θ ∗) 2 | θ0 = t] 

= E v [(x (0) − θ ∗) 2 | θ0 = t, θr ∈ S 0 ] · P v ( θr ∈ S 0 | θ0 = t ) 

+ E v [(x (1) − θ ∗) 2 | θ0 = t, θr ∈ S 1 ] · P v ( θr ∈ S 1 | θ0 = t ) 

= (t − θ ∗) 2 · (1 − P v ( θr ∈ S 1 | θ0 = t ) ) 

+ (x (1) − θ ∗) 2 · (P v ( θr ∈ S 1 | θ0 = t ) ) 

= (t − θ ∗) 2 · P v 

(
Z 1 < 

∣∣∣∣ t − x (1) 

2 

√ 

v 

∣∣∣∣
)

+ (x (1) − θ ∗) 2 · P v 

(
Z 1 ≥

∣∣∣∣ t − x (1) 

2 

√ 

v 

∣∣∣∣
)

. 

y integrating, 

 v [(x ( DBMS ) − θ ∗) 2 ] 

= 

∫ ∞ 

−∞ 

(t − θ ∗) 2 · P v 
(

Z 1 < 

∣∣∣∣ t − x (1) 

2 
√ 

v 

∣∣∣∣
)

1 √ 

2 πv 
exp 

(
− (t − θ ∗) 2 

2 v 

)
dt 

+ 

∫ ∞ 

−∞ 

(x (1) − θ ∗) 2 · P v 
(

Z 1 ≥
∣∣∣∣ t − x (1) 

2 
√ 

v 

∣∣∣∣
)

1 √ 

2 πv 
exp 

(
− (t − θ ∗) 2 

2 v 

)
dt 

= �0 ·
∫ ∞ 

−∞ 

y 2 P v 

(
Z 1 < 

∣∣∣y + c v 

2 

∣∣∣)ϕ(y ) dy 

+ �1 ·
∫ ∞ 

−∞ 

P v 

(
Z 1 ≥

∣∣∣y + c v 

2 

∣∣∣)ϕ(y ) dy 

= �0 · E v 
[
Z 2 2 �(| Z 2 + c v | / 2) 

]
+ �1 · E v [ 1 − �(| Z 2 + c v | / 2) ] , (7) 

sing v = �0 and the variable substitution y = (t − θ ∗) / 
√ 

v . Now,

f c v ≥ 0 then we can replace c v by | c v | in Eq. (7) . If c v < 0 , then

 2 
d = −Z 2 and | c v | = −c v , and we can also replace c v by | c v in (7) .

ince | c v | = 

√ 

�1 / �0 , it follows that 

 v [(x ( DBMS ) − θ ∗) 2 ]�0 · E 

[ 

Z 2 2 �

( 

| Z 2 + 

√ 

�1 / �0 | 
2 

) ] 

+ �1 · E 

[ 

1 − �

( 

| Z 2 + 

√ 

�1 / �0 | 
2 

) ] 

. 

his proves the proposition. �
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The results of Propositions 1 –4 are illustrated in Figs. 2 and

 , for θ ∗ = 0 . 5 and x (1) = 0 . In this figure, we write p ∗(v ) :=
 v ( θ ∗ ∈ S 1 ) . Fig. 2 illustrates the various monotonicity and limiting

roperties stated in Propositions 1 –3 . Fig. 3 illustrates that model

 

(0) is better than model M 

(1) when v is small; the figure also

hows that, in that case, the performance of dbms is close to that

f M 

(0) . If v is large then model M 

(1) is better than M 

(0) , and, in

hat case, dbms is able to reduce the loss of M 

(0) . 

.1.3. Difficulty of extending these results to more general decision 

roblems. 

Propositions 1 –4 provide detailed insights into the behavior and

roperties of dbms and its relation to �1 and �0 . Unfortunately,

he proofs of these propositions also reveal that it is difficult to ex-

end these insights to more general decision problems. The proofs

epend on explicit expressions of the distributions of θ0 , θ r , and

1 , which in many applications are not available in closed form.

n some problems one might perhaps exploit asymptotic normal-

ty of estimators to obtain structural insights, but since we are

rimarily interested in understanding the finite-sample behavior

f dbms , such asymptotic normality results then need to be ac-

ompanied by a good understanding of the corresponding con-

ergence rates. Other complications that arise when one tries to

xtend these insights to more general decision problems are that

he shapes of the sets S 0 and S 1 can be highly complex, which

ampers the analysis of terms like P ( θr ∈ S 1 ) , and that the dis-

ribution of the estimators of different models may depend in

 non-trivial way on properties of x 1 , . . . , x n . Despite these diffi-

ulties to generalize the structural results from Propositions 1 –4,

ection 4 suggests that dbms can successfully be applied to more

omplex model selection problems. 

.2. Alternatives to DBMS 

To appreciate dbms it is useful to consider a few alternatives. A

rst option is 

rg max 
k ∈{ 0 , 1 , ... ,K} 

r(x (k ) , τ (k ) (d r )) , (8) 

hich is defined if �( k ) ⊂�(0) for all k . This method evaluates deci-

ion x ( k ) using the resampled estimate τ ( k ) ( d r ) instead of τ (0) ( d r ). A

isadvantage of this approach is the potential lack of consistency:

n general, τ ( k ) ( d r ) does not have to converge a.s. to θ ∗ as n → ∞ ,

ven when τ (0) ( d r ) and τ (0) ( d 0 ) do converge a.s. to θ ∗ as n → ∞ .

s a result, this method may structurally overestimate the perfor-

ance of one of the simplified models M 

( k ) , and thus may select a

odel whose corresponding decision has a very poor performance

hen evaluated under the true reward function. 

This drawback might perhaps be mitigated by considering 

rg max 
k ∈{ 0 , 1 , ... ,K} 

r(x (k ) , τ (i n ) (d r )) , (9) 

or some data-dependent (i n ) n ∈ N that satisfies P ( i n = 0 ) → 1 as

 → ∞ . A drawback of this method is that it is not clear how this

equence (i n ) n ∈ N should be chosen. The ‘optimal’ way to do this

robably depends on the unknown parameters, thus creating an

dditional source of error in the model selection procedure. 

Our model selection method is probabilistic: it is based on a

ingle resampled data set d r , which is a realization from D ( θ0 ). Al-

ernatively, one could consider 

rg max 
k ∈{ 0 , 1 , ... ,K} 

E [ r(x (k ) , τ (0) (D (θ0 ))) | d 0 ] . (10) 

his method was considered in an earlier version of this paper. Al-

hough this method yields a non-random model selection method,

hich perhaps might be preferable for some practitioners, a dis-

dvantage is that it does not work for a large class of prob-

ems (including many types of linear programs with parameter
sed model selection, European Journal of Operational Research, 
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Fig. 2. p ∗(v ) , �(v ) , p(v ) , and p ( �), with θ ∗ = 0 . 5 and x (1) = 0 . 

Fig. 3. Loss of x (0) , x (1) , and x ( DBMS ) , with θ ∗ = 0 . 5 and x (1) = 0 . 
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uncertainty). In particular, if the reward function r ( x , θ ) is lin-

ear in θ , τ (0) is an unbiased estimator, and χ (0) is exact, then

E [ r(x (k ) , τ (0) (D (θ0 ))) | d 0 ] = r(x (k ) , θ0 ) , and (10) is equivalent to

simply always choosing model M 

(0) . 

A completely different approach is to neglect the decisions sug-

gested by the available simplified models M 

( k ) , k > 0, and to deter-

mine the optimal decision by solving 

max 
x ∈X 

r(x, τ (0) (d r )) , (11)

or 

max 
x ∈X 

E [ r(x, τ (0) (d r )) | d 0 ] . (12)

At first sight Eq. (11) may seem more flexible than dbms : why

would one restrict oneself to { x (0) , . . . , x (k ) } when one can opti-
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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ize over the whole decision space X ? The reason is that the deci-

ions generated by the available models are not just arbitrary num-

ers: the idea is that the simplified models improve upon the true

odel if the variance of θ0 is too high; this mitigates the poor

uality of x (0) caused by a high variance of θ0 . This property is

ost with methods (11) and (12) . The method (12) has the addi-

ional disadvantages that (i) it is just equivalent to the original op-

imization problem max x ∈X r(x, θ0 ) if τ
(0) is unbiased and r ( x , θ ) is

inear in θ , and (ii) the expectation operator could make the prob-

em more difficult to solve numerically (or even computationally

ntractable), leading to additional optimization errors. 

In the example considered in Section 3.1.2 , (11) would im-

ly that decision x = θr is chosen. Since θr ∼ N(θ0 , v ) and θ0 ∼
(θ ∗, v ) , the expected loss of this decision equals 

 [ max 
x ∈X 

r(x, θ ∗) − r(θr , θ
∗)] = E [(θr − θ ∗) 2 ] = E [ E [(θr − θ ∗) 2 | θ0 ]]

= E [ θ2 
0 + v − 2 θ0 θ

∗ + (θ ∗) 2 ] = 2 v , 

hich is twice the loss of the decision x (0) corresponding to model

 

(0) . This shows that (11) is worse than simply using model M 

(0) .

n the same example, decision rule (12) would imply that decision

 = x (0) is chosen, i.e. that model M 

(0) is always followed, even if

ts performance is much worse than that of model M 

(1) . 

.3. Consistency 

dbms is reward-consistent: under some conditions, the loss in

eward caused by dbms not selecting the best available model con-

erges in probability to zero as the data size grows large. To for-

ally state this property, we introduce some notation. 

Let (x n ) n ∈ N be an infinite sequence in X , let D n (θ ) :=
(x 1 , Y (x 1 , θ ) , . . . , x n , Y (x n , θ )) for n ∈ N and θ ∈ �(0) , and let || · || ϑ

e a norm on �(0) . Let θk (n ) = τ (k ) (D n (θ ∗)) denote the esti-

ate corresponding to model M 

( k ) based on data D n ( θ ∗), and
sed model selection, European Journal of Operational Research, 
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et x ( k ) ( n ) := χ ( k ) ( θ k ( n )) be the optimal decision according to

odel M 

( k ) at stage n , for k = 0 , 1 , . . . , K and n ∈ N . Let θr (n ) =
(0) (D n (θ0 (n ))) be the resampled estimator using n data points,

nd let 

 

( DBMS ) (n ) := arg max 
k ∈{ 0 , 1 , ... ,K} 

r(x (k ) (n ) , θr (n ))) 

e the model selected by dbms at stage n , with ties decided in

avor of the smallest maximizer. Finally, let 

 

( DBMS ) (n ) := r(x (k ( DBMS ) (n )) , θ ∗) 

e the corresponding reward, and let 

 

∗(n ) := max 
k ∈{ 0 , 1 , ... ,K} 

r(x (k ) (n ) , θ ∗) 

e the reward using the best of the available models at stage n . 

roposition 5. Suppose that || θr (n ) − θ ∗|| ϑ converges in probability

o zero, r ( · , · ) is continuous in both variables, and x ( k ) ( n ) converges

n probability as n → ∞ , for each k = 0 , 1 , . . . , K. Then 

 r ( DBMS ) (n ) − r ∗(n ) | P → 0 as n → ∞ . (13) 

n particular, if x ( k ) ( n ) converges in probability to some x ∗ ∈
rg max 

x ∈X 
r(x, θ ∗) as n → ∞ , for some k ∈ { 0 , 1 , . . . , K} , then 

 

( DBMS ) (n ) 
P → r(x ∗, θ ∗) as n → ∞ . (14) 

roof. Let ε > 0, and let k ∗( n ) be the smallest maximizer of r ( x ( k ) ,
∗) w.r.t. k . 

 

(| r ( DBMS ) (n ) − r ∗(n ) | > ε
)

= 

K ∑ 

k =0 

P 

(
k ( DBMS ) (n ) = k and r(x (k ) (n ) , θ ∗) < r(x (k ∗(n )) (n ) , θ ∗) − ε

)

≤
K ∑ 

k =0 

P 

(
r(x (k ) (n ) , θr (n )) ≥ r(x (k ∗(n )) (n ) , θr (n )) 

and r(x (k ) (n ) , θ ∗) < r(x (k ∗(n )) (n ) , θ ∗) − ε

)

≤
K ∑ 

k =0 

P 

( 

r(x (k ) (n ) , θr (n )) − r(x (k ) (n ) , θ ∗) + r(x (k ) (n ) , θ ∗) 
≥ r(x (k ∗(n )) (n ) , θr (n )) − r(x (k ∗(n )) (n ) , θ ∗) + r(x (k ∗(n )) (n ) , θ ∗) 
and r(x (k ) (n ) , θ ∗) < r(x (k ∗(n )) (n ) , θ ∗) − ε

)

(15) 

ix k ∈ { 0 , 1 , . . . , K} , and let x ( k ) ( ∞ ) be the limit point of x ( k ) ( n ) as

 → ∞ . Since x (k ) (n ) 
P → x (k ) (∞ ) , | | θr (n ) − θ ∗| | ϑ P → 0 , and r ( · , · ) is

ontinuous in both variables, it follows that 

(x (k ) (n ) , θr (n )) − r(x (k ) (n ) , θ ∗) 
P → 0 . 

ince 

 r(x (k ∗(n )) (n ) , θr (n )) − r(x (k ∗(n )) (n ) , θ ∗) | 
≤ sup 

l∈{ 0 , 1 , ... ,K} 
| r(x (l) (n ) , θr (n )) − r(x (l) (n ) , θ ∗) | , 

his implies that also 

 r(x (k ∗(n )) (n ) , θr (n )) − r(x (k ∗(n )) (n ) , θ ∗) | P → 0 . 

t follows that (15) converges to 

K 
 

k =0 

P 

(
r(x (k ) (n ) , θ ∗) ≥ r(x (k ∗(n )) (n ) , θ ∗) and 

r(x (k ) (n ) , θ ∗) < r(x (k ∗(n )) (n ) , θ ∗) − ε

)
= 0 . 

his implies the first statement of the proposition. The sec-

nd statement follows from observing that x (k ) (n ) 
P → x ∗ implies

 

∗(n ) 
P → r(x ∗, θ ∗) , since r ( · , · ) is continuous. �

Observe that the statement of Proposition 5 is in terms of the

ewards, and not in terms of the probability that dbms selects

he best available model. The reason is that it may happen that

 

( DBMS ) (n ) < r ∗(n ) a.s. for all n ∈ N , while both r ( DBMS ) (n ) and r ∗( n )
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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onverge in probability to r ( x ∗, θ ∗). This can occur e.g. if both the

rue model M 

(0) and one of the simplified models, say M 

(1) , are

orrectly specified, and the reward r ( x (1) ( n ), θ ∗) converges faster to

 ( x ∗, θ ∗) than r ( x (0) ( n ), θ ∗). It may then happen that the probability

hat dbms selects the best available model (i.e. model M 

(1) ) does

ot converge to one, but that the reward using dbms still converges

o the optimal reward. Of course, if there is only a single model

 

( k ) with r(x (k ) (n ) , θ ∗) P → r(x ∗, θ ∗) , then Eq. (14) implies that the

robability that dbms selects this model does converge to one as n

rows large. 

Ideally we would like to be able to give a finite-sample per-

ormance guarantee for dbms . However, as already alluded to in

ection 3.1 , it is very difficult to state such a result in a gen-

ral setting, without making further assumptions on the models,

stimators, and optimization algorithms. In Section 4 we provide

 numerical study of the finite-sample performance of dbms and

wo alternative methods, for two well-known business optimiza-

ion problems. 

.4. Further remarks 

It is worth emphasizing that dbms (and in fact any model selec-

ion method) can only be effective if a simplified model may out-

erform the true model with some positive probability. If this is

ot the case, then always using the true model is better than any

odel selection method that deviates from the true model with

ositive probability. Decision-based model selection is not a magic

ullet: its effectiveness depends not only on the quality of the

election method, but also on the quality of the simplified mod-

ls under consideration, in particular their ability to generate bet-

er decisions than the true model for some initial data sets. For

xample, the fact that a simple multinomial logit (MNL) model

utperforms a sophisticated machine learning model in Feldman

t al. (2019) strongly suggests that the MNL model captures at least

ome of the essential structure of the problem. 

Finally, our analysis of dbms assumes that model M 

(0) is cor-

ectly specified: there is some ‘true’ parameter θ ∗ ∈ �(0) . The as-

umption that a posited model is correctly specified for a given

ata sequence is standard in the statistics literature and perhaps

navoidable for purposes of analysis; for example, practically all

onsistency and convergence-rate results on estimators are only

eaningful in practice if one assumes that the data is generated

y the postulated model, or perhaps by a model that, in some

ense, is ‘close’ to the postulated model. In real-life applications,

owever, it is reasonable to expect that even M 

(0) is not correctly

pecified. Nothing hinders a decision maker to still apply dbms in

his case; even our consistency result in Section 3.3 remains valid

the proof of Proposition 5 uses nowhere the fact that θ ∗ is the

true’ parameter). Of course, ‘reward-consistency’ should then not

e interpreted as convergence to the ‘optimal reward’ per se, but as

onvergence to r ( χ (0) ( θ ∗), θ ∗), the optimal reward with respect to

odel M 

(0) and parameter θ ∗. The quality of the decision χ (0) ( θ ∗)

compared to the optimal decision with respect to the ‘true’ data-

enerating mechanism) depends of course on how accurate the

now misspecified) model M 

(0) describes the true data-generating

echanism. 

Unfortunately, it is in general not possible to know with cer-

ainty whether ones model is correctly specified: it is possible to

onstruct examples where an adversarial Nature tries to make a

ecision maker believe in her model and corresponding optimal

ecision, whilst at the same time a different, a better decision is

vailable. This, and related questions about detecting the validity

f the most general model that one has at ones disposal, is outside

he scope of this paper. 
sed model selection, European Journal of Operational Research, 

https://doi.org/10.1016/j.ejor.2020.08.025


10 A.V. den Boer and D.D. Sierag / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; September 5, 2020;22:0 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

P  

f  

l  

m

 

o  

a  

t

 

m  

{  } 
w  

p

 

 

 

 

 

 

 

 

 

 

 

s  

s  

l  

p  

s  

p

 

t  

t

 

d  

u  

o  

(  

t  

i

A  

A  

h  

p  

f

4. Numerical illustrations 

We illustrate the performance of dbms by applying it to two

well-known business optimization problems: assortment optimiza-

tion and the newsvendor problem. These are two different types of

problems. The first is a discrete optimization problem where the

unknown parameter is finite-dimensional, and where the distribu-

tions of the random observations Y ( x ) depend on the decisions x .

The second is a continuous optimization problem where the un-

known parameter is infinite-dimensional, and where the distribu-

tions of Y ( x ) are independent of x . 

4.1. Assortment optimization 

Assortment optimization consists of determining which set (‘as-

sortment’) of products a firm should offer to potential customers in

order to maximize expected revenue. 

Setting. A seller offers a subset (called an ‘assortment’) of m ∈
N products { 1 , . . . , m } for sale to its potentials customers. Selling

a single item of product j gives revenue r j to the firm, for some

r 1 , . . . , r m 

> 0 . Upon being offered an assortment, a customer either

buys nothing, in which case the firm earns nothing, or buys exactly

one of the products, say product j , from the assortment, in which

case the firm earns r j . 

A decision corresponds to a nonempty subset x ⊂ { 1 , . . . , m } ,
and the set of feasible decisions X is the collection of all such

subsets. Let Y ( x ) denote the product that a customer buys when

being offered assortment x ∈ X . For each assortment x , Y ( x ) is

multinomially distributed on x ∪ {0}; here Y (x ) = 0 corresponds to

buying nothing. The probability distribution of Y ( x ) is given by

P ( Y (x ) = j ) = θ ∗
j,x 

, for all j ∈ x and x ∈ X , and P ( Y (x ) = 0 ) = 1 −∑ 

j∈ x θ ∗
j,x 

for all x ∈ X , for some unknown parameter θ ∗ = (θ ∗
j,x 

| j ∈
x, x ∈ X ) in the parameter space 

�(0) = { (θ j,x | j ∈ x, x ∈ X ) | 0 ≤ θ j,x 

≤
∑ 

i ∈ x 
θi,x ≤ 1 for all j ∈ x and x ∈ X } . 

We deliberately keep �(0) very general, without imposing assump-

tions such as θ j,x ≤ θ j,x ′ when j ∈ x ′ ⊂ x . The expected reward func-

tion r : X × �(0) → R is given by 

r(x, θ ) = 

∑ 

i ∈ x 
r i θi,x . 

The estimator τ (0) maps data d = (x 1 , y 1 , . . . , x n , y n ) to 

τ (0) (d) = (τ (0) 
j,x 

(d) | j ∈ x, x ∈ X ) , 

where 

τ (0) 
j,x 

(d) = 

∣∣{ i ∈ { 1 , . . . , n } : (x i , y i ) = (x, j) } ∣∣ + 1 ∣∣{ i ∈ { 1 , . . . , n } : x i = x } ∣∣ + 1 

. 

Here | A | denotes the cardinality of a set A . This is a small modifi-

cation to the ordinary relative-frequency estimator |{ i ∈ { 1 , . . . , n } :
(x i , y i ) = (x, j) }| /|{ i ∈ { 1 , . . . , n } : x i = x }| ; because this latter ex-

pression is undefined if the denominator equals zero, we add one

to the frequency of each alternative (including the no-purchase op-

tion). 

The simplified model M 

(1) assumes that customers choose ac-

cording to the so-called multinomial logit model. This is a widely

used discrete-choice model that exhibits certain pleasant proper-

ties (such as a concave likelihood function) but is known to be

misspecified in several cases (illustrated, for example, by the in-

famous ‘red bus / blue bus paradox’). According to the multino-

mial logit model, Y ( x ) is multinomially distributed on x ∪ {0}, for all

x ∈ X , with choice probabilities P θ ( Y (x ) = j ) = 0 for all j �∈ x , and 
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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 θ ( Y (x ) = j ) = 

exp (θ j ) 

1 + 

∑ 

k ∈ x exp (θk ) 
, 

 θ ( Y (x ) = 0 ) = 

1 

1 + 

∑ 

k ∈ x exp (θk ) 
, (16)

or all j ∈ x . The unknown parameter θ = (θ1 , . . . , θm 

) is assumed to

ie in �(1) = R 

m , and is estimated with maximum likelihood esti-

ation. 

For both the true model M 

(0) and the simplified model M 

(1) ,

ptimization is exact and is done by comparing the revenues of

ll possible assortments. (Note that this is only computationally

ractable if m is not too large). 

Numerical experiments. For each number of products

 ∈ {3, 5, 10} and each size of the initial data set n ∈
 10 , 20 , 50 , 100 , 200 , 500 , 1000 , 2000 , 5000 , 10 , 000 , 20 , 000 , 50 , 000

e run 10,0 0 0 simulations. In each simulation we run three ex-

eriments: 

• in experiment A, the choice probabilities θ are drawn uniformly

at random, as follows: for each l ∈ { 1 , . . . , m } and for each as-

sortment x consisting of exactly l products, the choice prob-

abilities { θ j , x | j ∈ x ∪ {0}} are drawn uniformly at random from

the (l + 1) -dimensional simplex �l+1 := { (z 1 , . . . , z l+1 ) ∈ R 

l+1 |∑ l+1 
j=1 z j = 1 , z 1 , . . . , z l+1 ≥ 0 } . 

• in experiment B, the choice probabilities θ follow a parsimo-

nious Generalized Attraction Model ( Gallego, Ratliff, & Shebalov,

2015 ): we draw random η, v 1 , . . . , v m 

from the uniform distri-

bution on (0,1), and set 

θ j,x = 

v j 
1 + 

∑ 

i ∈ x v i + η
∑ 

i / ∈ x v i 
, ( j ∈ x, x ∈ X ) . 

• in experiment C, the choice probabilities θ follow a multino-

mial logit model: we draw random v 1 , . . . , v m 

from the uniform

distribution on (0,1), and set 

θ j,x = 

v j 
1 + 

∑ 

i ∈ x v i 
, ( j ∈ x, x ∈ X ) . 

In experiment A, the multinomial logit model M 

(1) is almost

urely misspecified, whereas in experiment C it is always correctly

pecified. Experiment B is somewhat in between: the multinomial

ogit model is misspecified, but, especially if η is small, the choice

robabilities are almost of the form (16) . This suggests that, for

ufficiently small n , model M 

(1) may produce good decisions in ex-

eriment B, despite the fact that the model is misspecified. 

The revenues corresponding to the individual products are set

o r i = 100 · i/m, i = 1 , . . . , m . The assortments x 1 , . . . , x n in the ini-

ial data d 0 are chosen uniformly at random from X . 

For each experiment we determine the optimal revenue un-

er full information (Opt), under model M 

(0) , model M 

(1) , and

nder dbms . We also test two alternative model-selection meth-

ds: Akaike Information Criterion (AIC), and 5-fold Cross-Validation

CV) on the estimated reward function. In particular, AIC chooses

he model that minimizes AIC( k ), k ∈ {0, 1}, where ties are decided

n favor of model M 

(0) , and where 

IC (0) := −2 

n ∑ 

i =1 

log τ (0) 
y i ,x i 

(d 0 ) + 2 m 2 

m −1 , (17)

IC (1) := −2 

n ∑ 

i =1 

log P τ (1) (d 0 ) ( Y (x i ) = y i ) + 2 m ; (18)

ere τ (1) ( d 0 ) is the maximum likelihood estimator of the unknown

arameters in model M 

(1) . Regarding (17) , note that the number of

ree parameters in model M 

(0) is equal to 
∑ m 

i =1 i 
(

m 

i 

)
= m 2 m −1 . 
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Table 1 

Average reward, 3 products. 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 68.98 59.60 55.46 58.59 55.46 58.67 

20 68.98 61.73 55.93 60.34 55.96 60.51 

50 68.98 64.63 56.37 63.40 60.55 63.29 

100 68.98 66.37 56.39 65.60 65.40 65.52 

200 68.98 67.52 56.36 67.07 67.38 67.18 

500 68.98 68.36 56.34 68.15 68.36 68.31 

1000 68.98 68.67 56.26 68.57 68.67 68.66 

2000 68.98 68.82 56.28 68.76 68.82 68.82 

5000 68.98 68.92 56.31 68.90 68.92 68.92 

10000 68.98 68.95 56.29 68.94 68.95 68.95 

20000 68.98 68.97 56.31 68.96 68.97 68.97 

50000 68.98 68.98 56.31 68.98 68.98 68.98 

(a) Experiment A: general choice model 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 38.97 33.66 36.95 34.81 36.95 35.93 

20 38.97 34.26 37.45 35.56 37.45 36.53 

50 38.97 35.39 37.67 36.22 37.66 37.22 

100 38.97 36.33 37.69 36.84 37.67 37.52 

200 38.97 37.11 37.70 37.38 37.70 37.65 

500 38.97 37.89 37.71 37.96 37.89 37.93 

1000 38.97 38.29 37.70 38.25 38.18 38.18 

2000 38.97 38.55 37.69 38.49 38.51 38.48 

5000 38.97 38.76 37.69 38.71 38.77 38.76 

10000 38.97 38.86 37.69 38.82 38.87 38.86 

20000 38.97 38.90 37.69 38.88 38.91 38.90 

50000 38.97 38.94 37.69 38.93 38.94 38.94 

(b) Experiment B: generalized attraction model 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 40.44 37.11 39.51 38.19 39.51 38.29 

20 40.44 37.21 39.96 38.38 39.96 38.84 

50 40.44 37.73 40.27 38.66 40.25 39.57 

100 40.44 38.15 40.37 38.90 40.31 39.89 

200 40.44 38.63 40.40 39.19 40.32 40.06 

500 40.44 39.23 40.43 39.58 40.35 40.19 

1000 40.44 39.59 40.43 39.84 40.38 40.27 

2000 40.44 39.87 40.43 40.04 40.41 40.33 

5000 40.44 40.13 40.44 40.22 40.42 40.37 

10000 40.44 40.26 40.44 40.31 40.43 40.40 

20000 40.44 40.34 40.44 40.37 40.43 40.42 

50000 40.44 40.40 40.44 40.41 40.44 40.43 

(c) Experiment C: multinomial logit model 
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Table 2 

Average reward, 5 products. 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 77.70 61.41 58.43 60.78 58.43 60.28 

20 77.70 62.47 59.75 61.61 59.75 61.60 

50 77.70 64.96 60.42 63.53 60.42 63.71 

100 77.70 67.67 60.50 65.95 60.95 66.00 

200 77.70 70.67 60.61 69.12 60.63 69.08 

500 77.70 74.04 60.70 73.29 73.88 73.72 

1000 77.70 75.83 60.81 75.38 75.83 75.82 

2000 77.70 76.75 60.86 76.53 76.75 76.75 

5000 77.70 77.32 60.93 77.24 77.32 77.32 

10000 77.70 77.51 60.90 77.49 77.51 77.51 

20000 77.70 77.61 60.88 77.59 77.61 77.61 

50000 77.70 77.66 60.93 77.66 77.66 77.66 

(a) Experiment A: general choice model 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 43.14 36.91 40.28 37.63 40.28 39.17 

20 43.14 35.89 41.02 37.27 41.02 39.57 

50 43.14 35.41 41.46 37.63 41.46 40.61 

100 43.14 36.20 41.57 38.32 41.57 41.14 

200 43.14 37.52 41.66 39.04 41.66 41.49 

500 43.14 39.36 41.71 40.07 41.71 41.65 

1000 43.14 40.48 41.72 40.89 41.72 41.70 

2000 43.14 41.30 41.73 41.46 41.73 41.78 

5000 43.14 42.07 41.75 42.08 41.95 42.22 

10000 43.14 42.46 41.76 42.43 42.5 42.59 

20000 43.14 42.71 41.76 42.65 42.78 42.78 

50000 43.14 42.92 41.75 42.88 42.95 42.95 

(b) Experiment B: generalized attraction model 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 46.83 44.23 45.32 44.83 45.32 44.36 

20 46.83 43.11 46.12 44.34 46.12 44.37 

50 46.83 42.20 46.58 44.14 46.58 45.26 

100 46.83 42.16 46.71 44.10 46.71 45.86 

200 46.83 42.59 46.78 44.13 46.78 46.49 

500 46.83 43.54 46.81 44.53 46.81 46.73 

1000 46.83 44.28 46.82 44.98 46.82 46.80 

2000 46.83 44.97 46.83 45.48 46.83 46.81 

5000 46.83 45.68 46.83 45.99 46.83 46.82 

10000 46.83 46.06 46.83 46.28 46.83 46.83 

20000 46.83 46.35 46.83 46.49 46.83 46.83 

50000 46.83 46.57 46.83 46.65 46.83 46.83 

(c) Experiment C: multinomial logit model 

n  

fi  

a  

a  

a  

m

 

t  

n  

f  

C  

5  

i

 

1  

t  

d  

(  

(

 

o  

n

i  

M  

c

c

CV chooses the model that minimizes CV( k ), k ∈ {0, 1}, where

ies are decided in favor of model M 

(0) , and where 

V (k ) := 

1 

5 

5 ∑ 

l=1 

√ ∑ 

i ∈ d l 

(
ˆ r (k ) (x i ; d 0 \ d l ) − r y i 

)2 ; (19) 

ere 

ˆ 
 

(0) (x ; d) := 

∑ 

j∈ x 
r j τ

(0) 
j,x 

(d) , 

ˆ 
 

(1) (x ; d) := 

∑ 

j∈ x 
r j P τ (1) (d) ( Y (x ) = j ) , 

re the estimated reward functions under model M 

(0) and M 

(1) re-

pectively, based on a data set d ; r 0 := 0, and d l := { (x i , y i ) | i =
 + (l − 1) n/ 5 , . . . , ln/ 5 } , l = 1 , . . . , 5 , is a decomposition of the ini-

ial data set d 0 in five mutually disjoint sets of equal size. 

The average rewards in the simulations are reported in

ables 1–3 . All standard errors are smaller than 0.18. 

Outcomes. In experiment A, model M 

(0) outperforms model M 

(1) 

or all tested value of n and m . The average reward under model

 

(0) converges to the optimal average reward as n grows large,

ut the average reward under model M 

(1) appears to converge to

 strictly lower value. The average loss due to using model M 

(1) 

nstead of model M 

(0) can be more than 20% (if n ≥ 20 0 0 and

 = 5 , or if n = 50 , 0 0 0 and m = 10 ). dbms is at most 2.5% ( m = 5 ,
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 = 100 ) away from the average performance of M 

(0) , and, for suf-

ciently large n ( n ≥ 200 in case m = 3 , n ≥ 1000 in case m = 5 ,

nd n ≥ 20 0 0 0 in case m = 10 ), dbms is within 1.0 percent of the

verage reward under model M 

(0) . Interestingly, dbms may yield

 larger average reward than both M 

(0) and M 

(1) ; this occurs for

 = 10 and n = 10 , 100 , 200 . 

All three model selection criteria dbms , AIC, and CV outperform

he other two of these criteria in some instances: dbms for m = 3 ,

 = 50 , 100 and m = 5 , n = 10 , 20 , 200 and m = 10 , n ≤ 20 0 0; AIC

or m = 3 , n = 20 0 , 50 0 , 10 0 0 , 20 0 0 and m = 5 , n = 50 0 , 10 0 0 ; and

V for m = 3 , n = 10 , 20 and m = 5 , n = 50 , 100 and m = 10 , n =
0 0 0 , 10 0 0 0 , 20 0 0 0 . For all other combinations of m and n there

s no single best model selection method among these three. 

AIC can lose up to 13.2% of the reward of dbms ( m = 10 , n =
0 , 0 0 0 ), but dbms loses never more than 1.0% of the reward ob-

ained by AIC ( m = 10 , n = 20 , 0 0 0 ). The performance of CV and

bms are closer to each other: CV is at most 1.7% worse than dbms

 m = 10 , n = 10 ), and dbms is at most 1.8 percent worse than CV

 m = 10 , n = 10 , 0 0 0 ). 

In experiment B, model M 

(1) may outperform model M 

(0) . This

ccurs if m = 3 and n ≤ 200, m = 5 and n ≤ 20 0 0, or m = 10 and

 is any of the tested values. For all other pairs m , n , model M 

(0) 

s better than M 

(1) . The loss of using model M 

(0) instead of model

 

(1) can be more than 30 percent ( m = 10 , n = 10 0 0 , 20 0 0 ), and

onversely, the loss due to using model M 

(1) instead of model M 

(0) 

an be up to 3.2 percent ( m = 3 , n = 50 , 0 0 0 ). 
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Table 3 

Average reward, 10 products. 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 86.64 68.05 64.66 68.05 64.66 66.87 

20 86.64 68.05 66.41 68.00 66.41 67.51 

50 86.64 68.01 67.47 67.99 67.47 67.80 

100 86.64 67.97 67.68 68.03 67.68 67.84 

200 86.64 67.90 67.77 68.05 67.77 67.76 

500 86.64 68.91 67.95 68.77 67.95 68.50 

1000 86.64 70.09 68.01 69.37 68.01 69.20 

2000 86.64 72.21 68.08 70.87 68.08 70.65 

5000 86.64 76.23 68.06 74.55 68.06 75.12 

10000 86.64 79.93 68.07 78.45 68.07 79.91 

20000 86.64 82.96 68.07 82.17 82.96 82.96 

50000 86.64 85.12 68.07 84.94 85.12 85.12 

(a) Experiment A: general choice model 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 48.08 38.25 44.01 38.30 44.01 42.65 

20 48.08 38.15 45.17 38.29 45.17 44.19 

50 48.08 37.84 45.72 38.21 45.72 45.41 

100 48.08 37.36 45.85 38.14 45.85 45.73 

200 48.08 36.62 45.94 37.91 45.94 45.90 

500 48.08 35.59 45.98 37.87 45.98 45.97 

1000 48.08 35.14 46.00 38.02 46.00 46.00 

2000 48.08 35.37 46.00 38.51 46.00 46.00 

5000 48.08 37.49 46.00 40.12 46.00 46.00 

10000 48.08 40.01 45.99 41.75 45.99 45.99 

20000 48.08 42.44 45.99 43.27 45.99 45.99 

50000 48.08 44.73 45.99 45.02 45.99 45.99 

(b) Experiment B: generalized attraction model 

n Opt M 

(0) M 

(1) 
dbms AIC CV 

10 56.42 55.26 53.99 55.30 53.99 54.70 

20 56.42 55.08 55.43 55.22 55.43 55.25 

50 56.42 54.59 56.08 54.97 56.08 55.56 

100 56.42 53.93 56.25 54.60 56.25 55.75 

200 56.42 52.90 56.34 54.09 56.34 55.92 

500 56.42 51.52 56.38 53.32 56.38 56.23 

1000 56.42 50.82 56.40 53.07 56.40 56.35 

2000 56.42 50.40 56.41 52.81 56.41 56.41 

5000 56.42 50.60 56.41 52.75 56.41 56.41 

10000 56.42 51.30 56.42 52.90 56.42 56.42 

20000 56.42 52.20 56.42 53.27 56.42 56.42 

50000 56.42 53.46 56.42 54.07 56.42 56.42 

(c) Experiment C: multinomial logit model 
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In the cases that M 

(1) is better than M 

(0) , dbms can improve

upon M 

(0) by more than 8 percent ( m = 10 , n = 10 0 0 , 20 0 0 ). In the

cases that model M 

(0) is better than M 

(1) , dbms loses never more

than 0.2% of the average reward of M 

(0) . Again we see that dbms

may yield a larger average reward than both M 

(0) and M 

(1) ; this

occurs for m = 3 , n = 500 and m = 5 , n = 50 0 0 . 

Again all three model selection criteria dbms , AIC, and CV out-

perform the other two of these criteria in some instances: dbms for

m = 3 , n = 50 0 , 10 0 0 ; AIC for m = 3 , n �∈ {50 0, 10 0 0} and m = 5 ,

n ≤ 10 0 0 or n = 50 , 0 0 0 , and m = 10 , n ≤ 10 0 0; and CV for m = 5 ,

n = 20 0 0 , 50 0 0 , 10 , 0 0 0 . For all other combinations of m and n

there is no single best model selection method. 

AIC seems to be the winner in this experiment: dbms can lose

up to 17.7% ( m = 10 , n = 500 ) and CV up to 3.5% ( m = 5 , n = 20 ),

compared to AIC, whereas AIC loses up to 0.3% compared to dbms

( m = 5 , n = 50 0 0 ) and 0.6% compared to CV ( m = 5 , n = 50 0 0 ). 

In experiment C, the multinomial logit model M 

(1) is correctly

specified, and outperforms model M 

(0) in all instances. Both the av-

erage reward of M 

(0) and M 

(1) converge to the optimum as n grows

large, but the reward of M 

(1) appears to converge faster than that

of M 

(0) . The average loss due to using model M 

(0) instead of model

M 

(1) can be more than 10 percent ( m = 10 , n = 20 0 0 , 50 0 0 ). dbms

always outperforms M 

(0) ; the relative improvement can be up to

4.8% ( m = 10 , n = 20 0 0 ). 

AIC is the clear winner in this experiment: for all pairs m , n

except m = 10 , n = 10 , the average reward under AIC is larger than
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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r equal to the average reward under AIC or CV. The reason is that

IC almost always selects model M 

(1) , which outperforms M 

(0) in

ll instances: for m = 3 , AIC has average reward within 0.2% of that

f M 

(1) , and for m = 5 , 10 , AIC has exactly the same average reward

s M 

(1) . 

An overall conclusion from these three experiments is that

here is no clear winner between dbms , AIC, and CV. In the most

eneral case considered in experiment A, both dbms and CV have

 somewhat similar performance, with sometimes one outperform-

ng the other and sometimes the other way around. Both outper-

orm AIC by a (sometimes) large margin. In experiments B and C,

here the multinomial logit model is correctly specified or ‘almost’

orrectly specified, AIC performs better than dbms and CV. 

Regarding dbms , we observe that the largest relative amount

hat dbms loses compared to M 

(0) (i.e. 2.6 percent in experiment

 and 0.2 percent in experiment B) is a magnitude smaller than

he largest relative amount that dbms can improve upon M 

(0) (i.e.

ore than 8 percent in experiment B, and 4.8 percent in experi-

ent C). 

Regarding AIC, we observe a ‘sudden’ jump in the average re-

ard in experiment A if m = 5 and n is between 200 and 500,

nd even more pronounced if m = 10 and n is between 10,0 0 0

nd 20,0 0 0. AIC almost behaves like an indicator function: if n

s smaller than a certain critical value it selects model M 

(1) with

igh probability, and if n is larger than this value then it selects

odel M 

(0) with high probability. This behavior is illustrated in

ig. 4 , where we repeat experiment A for m = 10 products and n =
7 , 0 0 0 , 17 , 10 0 , 17 , 20 0 , . . . , 20 , 0 0 0 (and with an increased num-

er of simulations of 80,0 0 0 instead of 10,0 0 0 for each n , because

f the finer granularity of n ). The figure shows the relative fre-

uency that dbms , AIC, and CV select model M 

(0) , together with

he ‘optimal’ model selector that always selects the best of the two.

t turns out that, for these values of n , model M 

(0) is preferable to

 

(1) in about 89–91% of the cases; dbms is close but slightly under-

stimates this with approximately two percentage points, and CV

tructurally overestimates this fraction to 1.0. However, AIC hardly

ver selects model M 

(0) if n ≤ 17, 0 0 0, and almost always selects

odel M 

(0) if n ≥ 20, 0 0 0. This sudden change may explain the

oor performance of AIC in Experiment A, compared to dbms or

V. 

.2. Newsvendor problem 

Our second numerical illustration applies dbms to the newsven-

or problem, an archetypal optimization problem in inventory

anagement. The problem consists of determining an order quan-

ity that optimally balances between the costs of stock-outs (‘back-

rder’ costs) and overstocking (‘holding’ costs). The newsvendor

roblem has been studied in many variants; we consider the most

asic version. 

Setting. The decision to take is an order quantity x from the

onnegative reals X = [0 , ∞ ) . After selecting x , an observation of

emand Y ( x ) is observed. The distribution of Y ( x ) is independent

f the decision x , and we write Y = Y (x ) . The unknown cumulative

istribution function (cdf) of Y is denoted by θ ∗, and lies in the

ollection �(0) of cdfs of nonnegative random variables with finite

xpectation: 

(0) = 

{
all cdfs θ : (−∞ , ∞ ) → [0 , 1] with 

lim 

y ↑ 0 θ (y ) = 0 and 

∫ ∞ 

0 

y d θ (y ) < ∞ 

}
. 

he expected cost function c : X × �(0) → [0 , ∞ ) is defined as 

(x, θ ) = h 

∫ x 

y =0 

(x − y ) d θ (y ) + b 

∫ ∞ 

y = x 
(y − x ) d θ (y ) , (20)
sed model selection, European Journal of Operational Research, 
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Fig. 4. Relative frequency of selecting model M 

(0) , as function of n . 
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or some known holding costs h > 0 and backorder costs b > 0. Note

hat this problem is about costs minimization instead of reward

aximization. We can still use dbms by applying it to the reward

unction r(x, θ ) := −c(x, θ ) . 

The demand distribution is estimated by the empirical distribu-

ion function: τ (0) maps a data sequence (x 1 , y 1 , . . . , x n , y n ) to the

istribution function 

 �→ 

1 

n 

n ∑ 

i =1 

1 { y i ≤ y } . (21) 

Optimization is exact: for each θ ∈ �(0) , (20) is minimized by 

(0) (θ ) := inf 

{
z ≥ 0 : θ (z) ≥ b 

b + h 

}
. (22) 

f θ has an inverse θ−1 then χ(0) (θ ) = θ−1 (b/ (b + h )) . 

The simplified model M 

(1) assumes that demand Y ( x ) is ex-

onentially distributed with mean θ , for all x ∈ X and some

∈ �(1) := [0, ∞ ). The estimator τ (1) maps data (x 1 , y 1 , . . . , x n , y n )

o the sample mean (y 1 + . . . + y n ) /n, and optimization is again

xact; for exponential distributions with mean θ , Eq. (22) equals
(1) (θ ) = −θ log (h/ (b + h )) . 

Numerical experiments. Fix h = 1 . For each backorder costs

 ∈ {2.0, 1.5, 1.0, 0.5} and each size of the initial data set n ∈ {10,

0, 100, 500, 1000} we run 10,000 simulations. In each simulation

e run three experiments: 

• in experiment A, we let Y be lognormally distributed with mean

m and variance v , where we draw m uniformly at random from

[0,5] and v uniformly at random from [0, 25]; 
• in experiment B, we let Y be lognormally distributed with mean

m and variance m 

2 , where we draw m uniformly at random

from [0,5]; 
• in experiment C, we let Y be exponentially distributed with

mean m , where we draw m uniformly at random from [0,5]. 

In experiment A the exponential-demand model M 

(1) is al-

ost surely misspecified, whereas in experiment C it is always

orrectly specified. Experiment B is somewhat in between: the

xponential-demand model is misspecified, but our requirement

ar (Y ) = E [ Y ] 2 on Y is satisfied by exponentially distributed de-

and. Thus, in experiment B, the distribution of Y is, in some

ense, closer to an exponentially distributed random variable than

n experiment A, which might imply that model M 

(1) sometimes

utperforms the true model for sufficiently small n . 

The decisions x 1 , . . . , x n in the initial data set are drawn uni-

ormly at random from the interval [0,5]. Note that these quanti-
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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ies are only needed to apply cross-validation, and are not used by

bms . 

For each experiment we determine the optimal costs under full

nformation (Opt), under model M 

(0) , model M 

(1) , and under dbms .

e also test 5-fold cross-validation (CV), which chooses the model

hat minimizes CV( k ), k ∈ {0, 1}, where ties are decided in favor of

odel M 

(0) , and where 

V (k ) := 

1 

5 

5 ∑ 

l=1 

√ ∑ 

i ∈ d l 

(
ˆ c (k ) (x i , d 0 \ d l ) − c i 

)2 ; (23) 

ere 

ˆ 
 

(0) (x ; ˜ d ) := 

1 

˜ n 

˜ n ∑ 

i =1 

h (x − ˜ y i ) 
+ + b( ̃  y i − x ) + , 

ˆ 
 

(1) (x ; ˜ d ) := h 

∫ x 

y =0 

(x − y ) e −y/ ̄y / ̄y d y + b 

∫ ∞ 

y = x 
(y − x ) e −y/ ̄y / ̄y d y 

= h (x + ( exp (−x/ ̄y ) − 1) ̄y ) + b exp (−x/ ̄y ) ̄y , 

re the estimated cost functions under model M 

(0) and M 

(1) re-

pectively, based on a data set ˜ d = ( ̃  x i , ̃  y i ) 1 ≤i ≤ ˜ n ; ȳ = 

1 
˜ n 

∑ ˜ n 
i =1 y i , c i =

 (x i − y i ) 
+ + b(y i − x i ) 

+ are the observed costs associated to ( x i ,

 i ), for i = 1 , . . . , n, and d l := { (x i , y i ) | i = 1 + (l − 1) n/ 5 , . . . , ln/ 5 } ,
 = 1 , . . . , 5 , is a decomposition of the initial d 0 in five mutually

isjoint sets of equal size. We omit comparing dbms to AIC, since

he true model is infinite-dimensional. 

The average costs in the simulations are reported in Tables 4–6 .

ll standard errors are smaller than 0.02. 

Outcomes. In experiment A, model M 

(0) outperforms model M 

(1) 

n all instances of b and n . The average costs under model M 

(1) 

an be more than 10 percent higher than that of M 

(0) ( b = 0 . 5 ,

 ≥ 50). The average costs under dbms are close to that of model

 

(0) : never more than 0.6 percent higher ( b = 1 . 0 , n = 10 ), and

or n ≥ 50 the difference is never more than 0.3% ( b = 1 . 5 , n = 50 ).

ross-validation performs worse than dbms in all instances of b

nd n . It loses up to 3.9% compared to M 

(0) ( b = 1 . 0 , n = 10 ), and

p to 2.0% if we only consider n ≥ 50 ( b = 1 . 5 , n = 50 ). 

In experiment B, model M 

(1) sometimes outperforms model

 

(0) . The average costs under model M 

(0) can be more than 1.2%

igher than under M 

(1) ( b = 0 . 5 , n = 10 ), and conversely, the aver-

ge costs under model M 

(1) can be more than 1.5 percent higher

han under M 

(0) ( b = 0 . 5 , n = 10 0 0 ). dbms is always within 0.7% of

he best performing model ( b = 0 . 5 , n = 10 ), CV is always within

.9 percent ( b = 0 . 5 , n = 50 ). There is no clear winner between

bms and CV: both sometimes outperform the other, but never by

 large margin. The costs under dbms can be up to 0.2% higher
sed model selection, European Journal of Operational Research, 
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Table 4 

Average costs in experiment A. Y ∼ lognormal (m, v ) . 

n Opt M 

(0) M 

(1) 
dbms CV 

10 2.42 2.59 2.66 2.59 2.67 

50 2.42 2.46 2.52 2.46 2.51 

100 2.42 2.44 2.51 2.45 2.48 

500 2.42 2.43 2.49 2.43 2.44 

1000 2.42 2.43 2.49 2.43 2.43 

(a) b = 2 . 0 

n Opt M 

(0) M 

(1) 
dbms CV 

10 1.98 2.09 2.17 2.10 2.16 

50 1.98 2.00 2.07 2.01 2.04 

100 1.98 1.99 2.05 1.99 2.02 

500 1.98 1.98 2.04 1.98 1.98 

1000 1.98 1.98 2.04 1.98 1.98 

(b) b = 1 . 5 

n Opt M 

(0) M 

(1) 
dbms CV 

10 1.46 1.53 1.62 1.54 1.59 

50 1.46 1.47 1.56 1.48 1.50 

100 1.46 1.46 1.55 1.47 1.48 

500 1.46 1.46 1.54 1.46 1.46 

1000 1.46 1.46 1.54 1.46 1.46 

(c) b = 1 . 0 

n Opt M 

(0) M 

(1) 
dbms CV 

10 0.83 0.88 0.96 0.89 0.90 

50 0.83 0.84 0.93 0.84 0.85 

100 0.83 0.84 0.93 0.84 0.84 

500 0.83 0.83 0.92 0.83 0.83 

1000 0.83 0.83 0.92 0.83 0.83 

(d) b = 0 . 5 

Table 5 

Average costs in experiment B. Y ∼ lognormal (m, m 

2 ) . 

n Opt M 

(0) M 

(1) 
dbms CV 

10 2.42 2.60 2.58 2.59 2.59 

50 2.42 2.46 2.46 2.46 2.46 

100 2.42 2.44 2.45 2.44 2.44 

500 2.42 2.42 2.43 2.42 2.42 

1000 2.42 2.42 2.43 2.42 2.42 

(a) b = 2 . 0 

n Opt M 

(0) M 

(1) 
dbms CV 

10 1.99 2.12 2.11 2.11 2.11 

50 1.99 2.02 2.02 2.02 2.02 

100 1.99 2.00 2.01 2.01 2.00 

500 1.99 1.99 2.00 1.99 1.99 

1000 1.99 1.99 2.00 1.99 1.99 

(b) b = 1 . 5 

n Opt M 

(0) M 

(1) 
dbms CV 

10 1.49 1.57 1.56 1.57 1.57 

50 1.49 1.50 1.50 1.50 1.50 

100 1.49 1.50 1.49 1.50 1.50 

500 1.49 1.49 1.49 1.49 1.49 

1000 1.49 1.49 1.49 1.49 1.49 

(c) b = 1 . 0 

n Opt M 

(0) M 

(1) 
dbms CV 

10 0.86 0.92 0.90 0.91 0.91 

50 0.86 0.87 0.88 0.87 0.88 

100 0.86 0.87 0.88 0.87 0.87 

500 0.86 0.86 0.88 0.86 0.86 

1000 0.86 0.86 0.88 0.86 0.86 

(d) b = 0 . 5 

 

 

 

 

 

 

 

 

 

Table 6 

Average costs in experiment C. Y ∼ exponential with mean m . 

n Opt M 

(0) M 

(1) 
dbms CV 

10 2.75 2.97 2.89 2.94 2.92 

50 2.75 2.80 2.78 2.79 2.78 

100 2.75 2.77 2.76 2.77 2.76 

500 2.75 2.75 2.75 2.75 2.75 

1000 2.75 2.75 2.75 2.75 2.75 

(a) b = 2 . 0 

n Opt M 

(0) M 

(1) 
dbms CV 

10 2.29 2.45 2.39 2.43 2.41 

50 2.29 2.33 2.31 2.32 2.32 

100 2.29 2.31 2.30 2.31 2.30 

500 2.29 2.29 2.29 2.29 2.29 

1000 2.29 2.29 2.29 2.29 2.29 

(b) b = 1 . 5 

n Opt M 

(0) M 

(1) 
dbms CV 

10 1.73 1.84 1.79 1.83 1.81 

50 1.73 1.76 1.75 1.75 1.75 

100 1.73 1.75 1.74 1.74 1.74 

500 1.73 1.74 1.73 1.74 1.73 

1000 1.73 1.74 1.73 1.73 1.73 

(c) b = 1 . 0 

n Opt M 

(0) M 

(1) 
dbms CV 

10 1.01 1.08 1.03 1.07 1.04 

50 1.01 1.03 1.02 1.02 1.02 

100 1.01 1.02 1.02 1.02 1.02 

500 1.01 1.02 1.01 1.01 1.01 

1000 1.01 1.01 1.01 1.01 1.01 

(d) b = 0 . 5 
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than under CV ( b = 1 . 5 , n = 10 ), and the costs under CV can be up

to 0.7% higher than under dbms ( b = 0 . 5 , n = 50 ). 

In experiment C, model M 

(1) outperforms model M 

(0) in all in-

stances of b and n ; the average costs under M 

(0) can be up to 4.7%

( b = 0 . 5 , n = 10 ) higher than under M 

(1) . dbms improves upon M 

(0)

in all instances, by up to 1.4% ( b = 0 . 5 , n = 10 ). CV does better than

dbms in all instances, and can improve upon M 

(0) by up to 3.6%

( b = 0 . 5 , n = 10 ). 

An overall conclusion from these three experiments is that

sticking to a single model M 

(0) or M 

(1) may induce losses up to

10 percent. The costs under dbms stay close to that of M 

(0) in case
Please cite this article as: A.V. den Boer and D.D. Sierag, Decision-ba
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(1) is misspecified, but if M 

(1) is better than M 

(0) , then part of

he potential gain is captured by dbms . Cross-validation performs

orse than dbms in experiment A, comparable to dbms in exper-

ment B, and better than dbms in experiment C. The largest ob-

erved gain of CV compared to M 

(0) is 3.6%, and the largest loss

.9%. For dbms these values are 1.4% and 0.6%. Thus, in some sense,

bms is closer to M 

(0) and CV is closer to M 

(1) : both the highest

ains and the largest losses of dbms compared to the true model

re smaller than the gains and losses of CV compared to M 

(0) . 

. Concluding remarks 

Data-driven decision making revolves around mathematical

odels, statistical estimators, and optimization algorithms. While

he properties of estimators and optimization algorithms have

een studied extensively in a wide variety of contexts, the ques-

ion how to select a proper mathematical model from a decision-

aking viewpoint has received little attention in the literature. In

any situations, for example, there is a choice between a simple

odel and more complex model. Determining which of these mod-

ls leads to the best decision is a very relevant question, but the

xisting literature does not describe a generic method to answer

t. An extensive model-selection apparatus has been developed in

he past decades, but these methods either do not take quality-of-

ecisions as the discriminating factor between models (and thus,

n a sense, decouple model selection from optimization), or can

nly be applied to a subset of the class of decision-problems that

e consider. 

This paper aims to take a step in the direction of connecting

odel-selection with data-driven decision making. To this end, we

ropose a generic decision-based model selection method, named

bms , that judges the quality of a model by the (estimated) qual-

ty of the decision it supports. The method is applicable to a wide

lass of decision-problems. It is easy to use in practice, does not

equire large computation times, and does not depend on hyper-

arameters that are difficult to tune. Under some conditions, the

ethod is reward-consistent (meaning that the reward using dbms

onverges to the optimal reward). Our numerical illustrations show
sed model selection, European Journal of Operational Research, 
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hat dbms is frequently on par and sometimes better than existing

odel-selection methods; this suggests that dbms is a step in the

ight direction, but that there also still is room for further improve-

ent and fine-tuning of the method. 

The main practical insight of this work is that decision mak-

rs who have to select a model for a data-driven decision problem

hould not confine themselves to a single model; instead, they can

elect multiple models with different degrees of complexity, and

se a decision-based model-selection method such as the one pro-

osed in this paper to determine, for each data set at hand, which

odel is expected to produce the best decision. 

Whilst the focus of this paper is on static problems, we ex-

ect that decision-based model selection can be a powerful tool

n dynamic decision problems under uncertainty (so-called multi-

rmed bandit problems ). In the majority of these problems, the

odel is fixed throughout the whole time horizon. As an alter-

ative, we suggest to incorporate decision-based model selection

nto the multi-armed bandit framework, such that the complexity

f the model upon which decisions are based grows with the size

nd richness of the data that is available. In other words, the com-

lexity of the used model should be ‘justified’ by what the data

an support, and when the data set is growing, the complexity of

he model should be growing as well. Integrating decision-based

odel selection method in such dynamic decision making prob-

ems may lead to significant improved performance in a wide vari-

ty of contexts. In several of such applications, dynamic model se-

ection can only be implemented if its computation times are suf-

ciently small. Because the method proposed in this paper scores

ell on this aspect - compared, for example, to cross-validation -

t may lend itself very well for such dynamic decision-making ap-

lications. 
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ppendix A. loss incurred by suboptimal model selection 

riteria 

In this supplementary section we show by an example that

odel selection based on assessing the quality of the estimated

arameters or of the estimated reward function, instead of the

uality of decisions, may induce unbounded losses. To this end,

onsider the linear program 

ax r(x, θ ) := max (θ − α) x s.t. 0 ≤ x ≤ 1 , 

or α ≥ 0, θ ∈ R , which is maximized by x ∗ := 1 { θ − α > 0 } . The

alue of α is known, the value of θ is unknown, but it can

e estimated from data of the form ( x i , y i ) 1 ≤ i ≤ n , where n is

n integer, x 1 , . . . , x n ∈ [0 , 1] are nonrandom and not all zero,

 i = θx i + εi for i = 1 , . . . , n, and ε1 , . . . , εn are i.i.d. normally dis-

ributed random variables with mean zero and (unknown) vari-

nce σ 2 > 0. The ordinary least squares estimates of θ and σ 2 are
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ˆ 
0 := ( 

∑ n 
i =1 x 

2 
i 
) −1 

∑ n 
i =1 x i y i and ˆ σ 2 

0 := n −1 
∑ n 

i =1 (y i − ˆ θ0 x i ) 
2 , the cor-

esponding estimated objective function is ˆ r 0 : x �→ ( ̂  θ0 − α) x, and

he corresponding estimated optimal decision is ˆ x ∗
0 

:= 1 { ̂  θ0 − α >

 } . These quantities correspond to what we call the ‘true’ model.

e also consider a simplified model, where the decision maker as-

umes θ = 0 . In this case, she estimates θ and σ 2 by ˆ θ1 := 0 and

ˆ 2 1 := n −1 
∑ n 

i =1 y 
2 
i 
, the objective function r by ˆ r 1 : x �→ (0 − α) x,

nd the corresponding optimal decision by ˆ x ∗
1 

:= 0 , the maximizer

f ˆ r 1 . 

Now, consider the following three model-selection criteria: 

(i) the quality of the estimated optimal decision ˆ x ∗
k 
, measured

by 

Regret ( ̂  x ∗k ) := r(x ∗) − r( ̂  x ∗k ) , k ∈ { 0 , 1 };
(ii) the quality of the estimated reward function ˆ r k , measured

by its L 2 distance to the true reward function: 

∣∣∣∣ˆ r k − r 
∣∣∣∣

2 
:= 

(∫ 1 

0 

( ̂ r k (x ) − r(x )) 2 d x 

)1 / 2 

, k ∈ { 0 , 1 };

(iii) the quality of the estimated parameters ˆ θk , ˆ σ 2 
k 
, measured by

the expected KL-divergence between the true and estimated

distribution of y at a randomly selected x : 

KL ( ̂  θk , ̂  σ 2 
k ) := 

∫ 1 

0 

∫ ∞ 

−∞ 

φ(y | θx, σ 2 ) log 

( 

φ(y | θx, σ 2 ) 

φ(y | ˆ θk x, ̂  σ 2 
k 
) 

) 

d y d x, k ∈ { 0 , 1 };

here φ( y | μ, ς 

2 ) is the pdf of a N ( μ, ς 

2 ) distributed random

variable, evaluated at y . 

Let 

 Regret := arg min 

k ∈{ 0 , 1 } 
Regret ( ̂  x ∗k ) , 

k L 2 := arg min 

k ∈{ 0 , 1 } 
∣∣∣∣ˆ r k − r 

∣∣∣∣
2 
, 

k KL := arg min 

k ∈{ 0 , 1 } 
KL ( ̂  θk , ˆ σ

2 
k ) , 

e the best models according to these three criteria, with ties de-

ided in favor of model k = 0 . The expected regret under these cri-

eria is given by 

 [ Regret (x k Regret 
)] = 

{ 

(θ − α) P 

(
ˆ θ0 ≤ α

)
if θ > α

0 if θ ≤ α
(24)

 [ Regret (x k L 2 
)] 

= 

⎧ ⎨ 

⎩ 

(θ − α) 
(
P 

(
ˆ θ0 ≤ α

)
+ P 

(
ˆ θ0 > α and ( ̂  θ0 − θ ) 2 > θ2 

))
if θ > α

(α − θ ) P 
(

ˆ θ0 > α and ( ̂  θ0 − θ ) 2 ≤ θ2 

)
if θ ≤ α

(25) 

nd 

E [ Regret (x k 
KL 

)] 

= 

⎧ ⎨ 

⎩ 

(θ − α) 
(
P 

(
ˆ θ0 ≤ α

)
+ P 

(
ˆ θ0 > α and KL ( ̂  θ0 , ̂  σ 2 

0 ) > KL ( ̂  θ1 , ̂  σ 2 
1 ) 

))
if θ > α

(α − θ ) P 
(

ˆ θ0 > α and KL ( ̂  θ0 , ̂  σ 2 
0 ) ≤ KL ( ̂  θ1 , ̂  σ 2 

1 ) 
)

if θ ≤ α

(26) 

If σ 2 / 
∑ n 

i =1 x 
2 
i 

= θ2 and α = θ + 0 . 75 
√ 

θ, for some θ > 0, then

 [ Regret (x k L 2 
)] can be made arbitrary large by choosing θ large,

hile E [ Regret (x k Regret 
)] remains zero. 

If 
∑ n 

i =1 x 
2 
i 

= c 1 n, θ = σ 2 = c 2 2 c 1 n, and α = θ + 0 . 75 c 2 ,

or some 0 < c 1 < 1 < c 2 , then, as n grows large,

 

(
KL ( ̂  θ0 , ˆ σ

2 
0 
) ≤ KL ( ̂  θ1 , ˆ σ

2 
1 
) 
)

converges to one, E [ Regret (x k KL 
)]

onverges to 0 . 75 c P ( N(0 , 1) > 0 . 75 ) ≈ 0 . 17 c , whereas
2 2 

sed model selection, European Journal of Operational Research, 
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E [ Regret (x k Regret 
)] = 0 for all n . The difference in expected

regret can be arbitrarily large by choosing c 2 large. 

Note that the model-selection criteria in this example depend

on the unknown parameters. They still need to be estimated from

data before they can be applied. Cross-validation and AIC are often

used to estimate k L 2 and k KL , and dbms is an estimator of k Regret .

The purpose of this example is not to compare the performance

of dbms with AIC or CV, but to argue that, in a decision-making

context, it makes sense to design model-selection procedures that

estimate k Regret , i.e. the quality of decisions, instead of k L 2 , k KL , or

other criteria not connected to the decision problem at hand. 
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