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A key step in data-driven decision making is the choice of a suitable mathematical model. Complex mod-
els that give an accurate description of reality may depend on many parameters that are difficult to
estimate; in addition, the optimization problem corresponding to such models may be computationally
intractable and only approximately solvable. Simple models with only a few unknown parameters may
be misspecified, but also easier to estimate and optimize. With such different models and some initial
data at hand, a decision maker would want to know which model produces the best decisions. In this
paper we propose a decision-based model-selection method that addresses this question.
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1. Introduction
1.1. Motivation

Model selection is the art of choosing from different math-
ematical models the one that provides the best description of
a certain real-world phenomenon. Many different model selec-
tion criteria have been proposed, typically based on statistical or
information-theoretic notions related to ‘goodness-of-fit' or ‘ex-
planatory power’, while also (albeit sometimes implicitly) taking
into account the number of parameters present in a model.

Mathematical models play a fundamental role in data-driven
optimization problems studied in operations research and manage-
ment science. In these problems one is not primarily interested in
obtaining a good description of some aspect of reality, but rather
in identifying a good decision that maximizes a certain objective
function. One would therefore expect that the main criterion based
upon which one selects a model in a data-driven optimization
problem is its ability to produce good decisions.

Perhaps surprisingly, this is not the case. Models are often se-
lected using ‘classical’ criteria related to obtaining estimates with
small statistical distance (such as mean squared error or Kullback-
Leibler divergence). But, as illustrated in Fig. 1, small statistical dis-
tance need not at all imply that the selected model leads to good
decisions (and the Appendix of this paper contains an example
showing that the loss of using the ‘wrong’ model selection crite-
rion can in fact be unbounded). A striking practical example of this
phenomenon is given by Feldman, Zhang, Liu, and Zhang (2019),
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who compare a sophisticated machine learning model to a simple
multinomial logit (MNL) choice model, in a product display opti-
mization problem of a large online market place. They conclude:

Our experiments show that despite the lower prediction power
of our MNL-based approach, it generates significantly higher
revenue per visit compared to the current machine learning al-
gorithm with the same set of features.

In addition, Besbes and Zeevi (2015) and Cooper, Homem-de
Mello, and Kleywegt (2015) have shown that misspecified models
may sometimes lead to good or even better decisions than a ‘cor-
rect’ model. Thus, in data-driven optimization problems, the value
of a model should solely be judged by the quality of the decisions
it produces, and not by, e.g., ‘goodness-of-fit’. This has also been
pointed out by Besbes, Phillips, and Zeevi (2010), who write:

‘[...] there has long been a recognition within the decision anal-
ysis literature that the value of quantitative modeling should be
judged primarily by the quality of the decisions they support
(see, for example, Nickerson & Boyd, 1980). However, there has
been a lack of methodologies for evaluating the adequacy of a
particular model from this vantage point.’

In decision problems, model selection is typically between
complex, ‘realistic’ models and ‘simple’ or simplified models.
A complex model, that takes into account many factors that are
thought to be relevant and important for the problem at hand, typ-
ically depends on many unknown parameters that may be difficult
to estimate accurately (especially if only limited data is available).
In addition, determining the corresponding optimal decision may
be computationally intractable, such that heuristics or simulations
have to be used to find an (approximately) optimal solution.
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Fig. 1. Although the objective function estimated by Model 1 is closer to the truth
than that of Model 2 (measured, e.g., by their L? distance), the optimal decision x?)
corresponding to Model 2 yields a higher objective f{x(?)) than the optimal decision
x1) corresponding to Model 1.

A simple model that neglects important factors may be mis-
specified, but it may also involve fewer unknowns that need to
be estimated, and the associated optimization problem may be
exactly solvable.

With two such models at hand, an important question is
whether the modeling error of the simple model outweighs the
larger estimation and optimization errors associated with the com-
plex model. A large variety of model-selection methods exists (dis-
cussed in more detail in the next section) based on statistical or
information-theoretic criteria. Although these criteria may perform
well when one wants to derive qualitative insights or make pre-
dictions, they are generally not tailored to their use in generic op-
timization problems, and thus may select a model based on the
‘wrong’ criterion as illustrated in Fig. 1. This motivates the cur-
rent study, in which we integrate model selection with data-driven
decision problems, by proposing a concrete and generic decision-
based model-selection method.

1.2. Literature

Model selection. The rich field of model selection has produced
a wide variety of tools and techniques to select a model, such
as Akaike Information Criterion (AIC; Akaike, 1973), Bayesian
information criterion (BIC; Schwarz, 1978), deviance informa-
tion criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde,
2002), Mallows’ Cp (Mallows, 1973), the Minimum Description
Length principle (Rissanen, 1978), Bayesian model selection and
model averaging based on Bayes factors (Jeffreys, 1935; 1961),
cross-validation (Geisser, 1975; Stone, 1974), and many more. For
reviews and in-depth discussions of these methods we refer to the
books and survey papers by Arlot and Celisse (2010), Burnham and
Anderson (2002), Claeskens and Hjort (2008), Griinwald (2007),
Kass and Raftery (1995), Lahiri (2001), Wasserman (2000), and
Zucchini (2000).

These model selection methods are based on statistical or
information-theoretic criteria, and generally are designed with the
aim of identifying models with small statistical distance to the un-
derlying ground truth or a good fit on future (test) data coming
from the same source. If the goal of the decision maker is to use
models to derive qualitative insights or make predictions, these cri-
teria may perform quite well. However, these criteria are not nec-
essarily aligned with the goal of selecting a model that produces
good decisions. This observation, that a model selection method

should be aligned with the purpose for which the model is used,
is also made by Claeskens and Hjort (2003):

‘The idea of finding a single satisfactory statistical model for
one’s data, perhaps aided by the model information criteria dis-
cussed previously, is a central one in statistics, and carries with
it considerable intellectual and conceptual appeal. The chosen
model is fitted to data and is seen as the statistician’s best
approximation to the real data generating mechanism used by
nature, and secures a coherent view of statistical analysis of a
dataset. In this article we carefully extricate ourselves from this
classic point of view; that a single model should be used to ex-
plain all aspects of data or to predict all types of future data
points seems to us a little too constrained. Our view is that
such a “best model” should depend on the parameter under
focus.’

Claeskens and Hjort (2003) proceed by proposing a method, the
Focused Information Criterion (FIC), aimed at selecting a model
that gives good precision for estimating a certain parameter of in-
terest. The idea of FIC is to estimate the mean squared error of the
parameter of interest for each available model, and then select a
model for which this estimate is minimal. The method proposed
in the present paper is different from FIC, but it is inspired by
the same philosophy that model selectors should be aligned with
the purpose for which the models are used (in our case: producing
good decisions).

Statistical learning theory. Statistical learning theory (Bousquet,
Boucheron, & Lugosi, 2004; Hastie, Tibshirani, & Friedman, 2009;
Vapnik, 1998; 2000) addresses questions that are closely related to
model selection. The main goal in this field is to construct a pre-
diction function f : X — Y that provides a good description of the
relation between an input random variable X with support X and
an output random variable Y with support ). The joint distribution
of (X, Y) is unknown, but data consisting of ii.d. realizations (x;,
Yihi<i<n Of (X, Y) is available. The quality of a predictor f is mea-
sured by the risk R(f) = E[L(Y, f(X))], where the so-called loss
function L: Y% — [0,00) quantifies the error between Y and the
predicted f(X). As described in Bousquet et al. (2004) and Guyon,
Saffari, Dror, and Cawley (2010), the main methods to determine
a good predictor (empirical risk minimization, structural risk min-
imization, regularization methods) are based on the idea of mini-
mizing the empirical risk 31 ; L(y;, f(x)) over some class G c Y¥
of predictors, possibly augmented with a term that penalizes the
‘model complexity’ of f Selecting G can be seen as a model selec-
tion problem.

The framework is quite general - covering, for example, clas-
sification, regression, and density estimation problems - but is in
several regards different from the setting considered in this pa-
per. First, we do not make the assumption that xq, ..., x, are i.i.d.
realizations from a random X. Second, as outlined in Section 2.1,
we are solely interested in estimating a maximizer of the function
fx) :=E[t(X,Y) | X =x] for some known t: X x )Y — R, instead
of the ‘full’ relation between X and Y. For many problems, e.g. the
assortment optimization problem considered in Section 4.1, it is
unclear if (at all) it is possible to put this into the framework de-
scribed above.

Bayesian model averaging. Bayesian model selection techniques
share the same drawbacks as frequentists’ approaches, in that
they decouple model selection from a particular optimization
problem at hand. Bayesian model averaging (Kass & Raftery, 1995;
Wasserman, 2000), however, is an approach that can connect
optimization problems to the availability of different models. The
main idea of Bayesian model averaging is not to select a single
model from available alternatives, but to maintain a probability
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distribution that each of the given models is correct, and use this
probability distribution in all further derivations.

In data-driven optimization problems, such an approach could
look as follows. Let My, ..., My be K+ 1 models that may have
generated a given data set D, let each model M, have an associ-
ated parameter 0, living in a space ®,c®, let X be a space of
feasible decisions, and let r : X x ® — R be a reward function. Let
p(6r|M,) be a prior on the parameter 6, € ®,, and let p(M;) be a
prior on the probability that model M, is correct, for k=0, ..., K.
A fully Bayesian approach to maximize the reward, in the spirit of
Bayesian model averaging and thus without first selecting a model,
consists of maximizing the function

K+1

XHg/G

where p(6y | D. M) = p(D | 6. Mi) p(6; | My)/p(D | My) is the pos-
terior of 6y, p(D|6, M) is the likelihood of the data given param-
eter value 6, and model M, p(D | M) = fe,(e@k p(D | 6, M) p(6 |
M;)d6, is the evidence for model M), and p(M, |D) = p(D |
M) p(My)/ Zfio p(D | M))p(M,;) is the posterior probability that
model My, is correct, given data D.

Apart from the computational difficulties that solving (1) could
involve (which could introduce further optimization errors), a main
difference between this and our approach is that we do not (im-
plicitly) assume that each of the available models is ‘correct’ with
some (positive) probability. Even if it is known beforehand that a
certain model M is incorrect and could never have generated the
data, i.e. p(M;) = 0, it still could produce better decisions than a
correctly specified model. This aspect is not captured in this ap-
proach.

Somewhat related is the literature on inconsistent (Bayesian)
inference with misspecified models (see Griinwald and van Om-
men, 2014; Watson and Holmes, 2016, and the references therein),
which blends Bayesian methods with statistical learning theory.
Similar to the statistical learning theory literature discussed above,
these papers differ, among other things, from our framework by
assuming i.i.d. decisions and a different structural form of the loss
function.

Bridging model selection and data-driven optimization. Several
recent studies in the operations research and management sci-
ence literature consider aspects of model selection in conjunc-
tion with data-driven optimization problems. For example, Besbes
et al. (2010) design and analyze a hypothesis test to discrim-
inate between models based on the quality of decisions they
produce; Chu, Shanthikumar, and Shen (2008), Lim, Shanthiku-
mar, and Shen (2006), Liyanage and Shanthikumar (2005), and
Ramamurthy, Shanthikumar, and Shen (2012) argue for integrating
estimation, optimization, and model uncertainty in data-driven op-
timization problems; and Besbes and Zeevi (2015), Cachon and Kok
(2007), Cooper and Li (2012), Cooper, Homem-de Mello, and Kley-
wegt (2006), Cooper et al. (2015), and Lee, Homem-de Mello, and
Kleywegt (2012) study the quality of decisions under misspecified
models in pricing, revenue management, and inventory optimiza-
tion problems.

The notion that model selection methods should be aligned
with their purpose of producing good decisions is implicitly
present in some recent studies. Bastani and Bayati (2016), for ex-
ample, consider a linear multi-armed bandit problem with high-
dimensional covariates, and adaptively tune the regularization pa-
rameter of the LASSO estimator (Tibshirani, 1996) in order to
achieve optimal asymptotic reward. Since this regularization pa-
rameter is a measure of model complexity, their method can be
seen as an example of adapting a model selection method to
the purpose of generating good decisions. A similar idea appears
in Vahn, El Karoui, and Lim (2014), who enhance a data-driven

r(x. 6)p(6k | D. My) p(My. | D)d6.

€O

xeXx), (1)

portfolio optimization problem by a regularization parameter that
bounds the sample variance of the estimated objective function.
The regularization parameter is optimized by a variant of k-fold
cross-validation, where the validation step is based on a perfor-
mance metric relevant to investment problems. Although this pa-
per is not directly about model selection, it can again be seen as
an example where model selection techniques are tuned in order
to maximize the objective function of a data-driven optimization
problem.

Kao and Van Roy (2014) (cf. Kao & Van Roy, 2013) consider a
quadratic optimization problem, the solution of which depends on
an unknown covariance matrix ¥ of a Gaussian random variable.
The authors discuss various regularized maximum likelihood esti-
mators with regularization parameter tuned via cross-validation. In
addition, they propose to estimate ¥ by maximizing the in-sample
performance of the objective function, subject to a lower-bound
on the posterior probability of ¥ to mitigate overfitting. Thus, the
estimator of the unknown parameter is adapted to take the deci-
sion objective into account. A similar idea is considered by Kao,
Van Roy, and Yan (2009), who estimate an unknown parameter
of a quadratic function by a convex combination of ordinary least
squares and empirical loss minimization, and who choose this con-
vex combination while taking into account the goal of maximizing
the objective function.

1.3. Contributions

This paper proposes a model-selection method that evaluates
models based on the quality of the decisions they produce. The key
idea of the approach, named pBMms after decision-based model se-
lection, is to use a resampling procedure to estimate which of the
decisions suggested by different models gives the highest reward.
The method is applicable to a wide class of data-driven decision
problems, is not computationally intensive, and does not depend
on some hyper-parameter that is difficult to tune. Conceptually, it
connects the fields of model selection and data-driven optimiza-
tion. Our numerical results are encouraging, while also suggesting
that there still is room for further improvement.

The main practical insight for managers or practitioners who
work with models and data is that one does not have to confine
oneself to using either simple and misspecified or complex and in-
tractable models: one can (and in fact: should) use both, together
with a method such as pBMs that predicts which model produces
the best decision given the data set at hand.

Our numerical results also reveal that it is in general quite hard
to conclude which model selection method is ‘the best’. In the
assortment optimization problem considered in Section 4.1, DBMS
is much better than AIC when model M is clearly misspecified,
while AIC is better than pBMs when model M(1) is (near)correct. In
the newsvendor optimization problem considered in Section 4.2,
a similar conclusion holds: DBMs is better than cross-validation
when model M() is clearly misspecified, while cross-validation is
better than pBms when M( is correctly specified. From a prac-
tical point of view, conducting numerical simulations or real-life
experiments to evaluate the performance of different models (as
in Feldman et al, 2019) might be insightful. From a theoretical
point of view, it would be useful to derive worst-case performance
bounds for different model selection methods, accompanied by
lower bounds on the best achievable performance of any model
selection method. Our analysis in Section 3.1 suggests that a
general analysis of this kind might be technically challenging.
However, in particular problem instances (such as newsvendor
optimization), deriving informative upper and lower bounds on
the performance of model selection methods might be feasible.
This is left as an interesting direction for future research.
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1.4. Organization of the paper

The rest of this paper is organized as follows. Section 2 de-
scribes the formal decision-making framework that we consider,
and contains our decision-based model-selection criterion pBMS. In
Section 3 we explain the intuition behind pBMmS, discuss a few al-
ternatives, prove that pBMms is reward-consistent, and comment on
several other aspects of DBMs. Section 4 contains two numerical
illustrations, on an assortment optimization problem and on the
newsvendor problem, and Section 5 ends the paper with a few
concluding remarks. The supplementary material in the appendix
shows, by means of an example, that unbounded losses may be
incurred when model selection is not based on optimizing the ob-
jective function.

2. Decision-based model selection
2.1. Mathematical framework of decision-making

Consider a decision maker who tries to determine a decision
or action x in an action space X that maximizes her expected re-
ward E[t(x,Y(x))], where {Y(x) | x € X} is a collection of (possi-
bly multivariate) random variables with common support ), and
v: X xY— R is a known function called the reward function. The
distributions of Y(x) (x € X') are unknown to the decision maker,
but a data set dy = (X1,Y1,...,Xn,Yn), N € N, consisting of previ-
ously used actions x; € X and realizations y; of Y(x;) (i=1,...,n)
is available. To determine her data-driven decision, the decision
maker uses a model, an estimator, and an optimization algorithm.

A model is a set of the form

M={FyecF|xecX 0c0B}

where F is the set of cumulative distribution functions (cdfs) on
Y, and © is a non-empty and possibly infinite-dimensional set.
A model is called correctly specified if there is a unique 6* ¢ ®
such that, for all x € X, F ¢« is the cdf of Y(x); 8* is then called
the true parameter. An estimator is a function 7 : (X x V)" — @
that maps data to parameter values. An optimization algorithm
is a function x : ® — X that maps parameter values to deci-
sions. In data-driven decision problems, yx(6) typically maximizes
Jye(x. y)dE, o (y) with respect to x € X, for all 6 € ®; in this case
x is called exact. In many optimization problems, however, maxi-
mizing fyt(x,y)de (y) is intractable, and y is an heuristic or ap-
proximate optimal solution. If a single model M with correspond-
ing estimator t and optimization algorithm y is at hand, then the
decision maker uses action x(z(dp)).

2.2. Decision-based model-selection criterion

We consider the case models

M(O),M(l),..
MO =(F® cFlxex,0 c®®}, k=0,1,....K

where  multiple
.,M® are available (K € N), each of the form

and each with corresponding estimator (%) and optimization algo-
rithm x®), Model M(®) is called the ‘true model’ and is correctly
specified with true (but unknown) parameter 6* (For a discus-
sion about this assumption, see Section 3.4). The other models are
considered simplifications, and may be misspecified. The decision
maker knows that model M(© is correctly specified.

Let x0) := x(K)(7(K)(d,)) denote the decision suggested by model
k (k=0,1,...,K). The decision maker needs to determine the
model k for which x() gives the highest expected reward; i.e. she
needs to estimate

arg max rx®, 6%, (2)
kef{0,1,....K}

where we write
rx.6) 1= [ «x A )
Y g

for the expected reward under model M(®) as function of x and 6.

Observe that simply replacing 6* by t(9(dy) in (2) is not in-
formative: if x(© is exact, then we have r(x(®), t(0(dg))> r(x®,
7(0)(dy)) by definition, for all k=1,... K.

Our idea is to estimate (2) by a resampling procedure, as fol-
lows: construct a new data set dr = (x1,y7,...,%n,y;) - the sub-
[superscript ‘I’ refers to ‘resampled’ - with the same covariates x;
as in dyp, but with the observations y; replaced by random samples

r ; i esti ©) -
yi drawn according to their estimated cdf in,f(o) (o) (i=1,...,n).

We subsequently estimate (2) by replacing the true parameter 6*
by its estimate based on the resampled data:

arg max rx®, t@d,)). (DBMS)
ke{0.1,...K)

In case of a tie, we select the maximizer with the smallest k.

3. Discussion and analysis
3.1. Intuition behind DBMS

In this section we provide an intuition behind pBMs. To this
end, we introduce some notation: we write Y(x, 6) for the random
variable with cdf Fx(g), and D(O) = (x1,Y(x1,0), ..., %, Y(%n,0))
for the random data vector as function of 6. We write 6, =
7, (D(6*)) for the parameter estimate under model M) (viewed
as a random variable), and 8, = (@ (D(6,)) for the parameter es-
timate based on the resampled data set. Note that we can regard
the initial data set dy as a realization of D(6*), and the resampled
data set d; as a realization of D(0).

We first explain in Section 3.1.1 why misspecified models may
yield better decisions than the correct model. Next, in Section 3.1.2,
we study several structural properties of pBMS by means of an ex-
ample that involves two models. In this example, we show how
the probability that the misspecified model outperforms the cor-
rect model, the corresponding expected performance gain, and the
probability that pBms selects the misspecified model are related
to the variance of the estimator under M(®) and to the expected
gain or loss under the misspecified model. We also obtain an ex-
plicit expression for the performance of pBMs. In Section 3.1.3 we
discuss the difficulties of extending these insights to more general
decision problems.

3.1.1. Better decisions by a misspecified model.

For ease of exposition we assume that there are only two mod-
els under consideration: a correctly specified model M(® and a
possibly misspecified model M(1). In addition suppose that x, ©(©)
and ©(1) are metric spaces, the function x—r(x, 8*) is globally Lip-
schitz continuous on X with unique maximizer x* € X, the algo-
rithm x(@ is exact, the function ¥ : ®® - x is globally Lip-
schitz continuous, and there are constants ¢y >0 and @ >0 such
that estimation error and performance loss of model M(® are re-
lated in the following way:

r(x @ 6.6 —r(x©(6).6%) = c||0* — 0] | for all 6 € O

We define the regret under model M), denoted by Regret(), as the
expected performance loss caused by using decision x(*) instead of
the optimal decision x*. It follows that the regret under model M(%)
satisfies

Regret® = E[r(x*, 0*) — r(x©, 6%)]
> co E[]10* — 6o]1]. (3)

https://doi.org/10.1016/j.ejor.2020.08.025
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where the expectation is taken with respect to the distribution of
the initial data D(0*). Define the misspecification loss of model
AD := min {r(x*,0%) —r(x6), 61,

min {rGe.6%) ~ (" (6).6))
and, for ease of exposition, suppose that there is a unique § ¢ @)
where this minimum is achieved. The Lipschitz conditions on r and
x1) imply that there is constant ¢; > 0 such that

Regret™) = E[r(x*, 0%) — r(xV, 6%)]
=AW 4+ E[r(xV(0),0%) —r(xV(61).6")]
< AW 4+ E[[16 - 64]]]. (4)

By comparing (3) and (4) it becomes clear why a misspecified
model may yield better decisions than a correctly specified model.
In particular, if the estimation error of model M(®), measured by
the expression on the righthandside of (3), is larger than the sum
of the misspecification error and estimation error of model M(1),
measured by the two respective terms in Eq. (4), then x(1) has
lower regret than x(©0 and thus model M(1) is preferable from a
decision-making perspective, even if this model is misspecified. It
is worth emphasizing that this discussion assumes that x(® is ex-
act. Optimization errors in the algorithm corresponding to model
M can be another source of why a misspecified model performs
better than a well-specified model.

3.1.2. Properties of DBMS in an example.

We now explain key properties of pBMs by means of an exam-
ple. Suppose that ¥ =R, ®@ =R, and r(x,0) = —(x — 0)? for all
(x.0) € R2. Data of the form (x;, y;), i=1,....n, n €N, is available,
where xi,...,x, € R are not all zero, y; =0*x;+¢; (i=1,...,n),
0* e R is the true but unknown parameter, and €q,...,€, are
i.i.d. standard normally distributed random variables. The decision
maker again considers two models. In model M(©, she (correctly)
assumes that y; ~ N(6x;, 1), for some 6 e R and all i =1,...,n; she
estimates the unknown parameter by ordinary least squares, i.e.
0o = (X1 x3) 1 Y1, xy;. and uses the exact algorithm x @ (6) =
 for all 6 € R; that is, the decision x(?) corresponding to model
MO is given by x(9):=6,. In the simplified model M), the de-
cision maker simply assumes 6* = 6, for some fixed 6; € R, with
corresponding decision x() = 6, and ®() :={6,}. (This represents
the situation that ¢ has a much smaller variance than 6).

Let v:= (Y ,x?)"!, and observe that 0y is normally dis-
tributed with mean 6* and variance v. In what follows, we treat v
as a variable and show how v influences the performance of both
models M© and M), and the performance of pBMms. To that end,
define the sets

So:={0 OO :rx® 9) >rxD,0)),
S1:={0 e ®Q : rx©,0) <r(xV,0))}.
Observe that these sets are random, since they depend (via 6) on
€1,..., €. In addition, let
Ag = E[max r(x,0%) — r(x®, 9*)],
XeX
Aq = E[maxr(x, 0*) — r(xW, 9*)],
xeX
be the regret corresponding to model M(® and model M(1), and
let
A@) :=E[rx",0%) —r(x,0)]

be the expected gain of using model M(!) instead of model M(®), as
function of v. In what follows, we write P,(-) and E,[-] to denote
probabilities and expectations that depend on v. In the example
we consider, Ag = v and A = —(6; — 0*)2.

In this section we prove four propositions with structural prop-
erties and the performance of pBMs in this problem. Our first re-
sult shows that both the probability that M(1) outperforms M(©),
and the corresponding expected performance gain, are increasing
in v, but decreasing in Aj.

Proposition 1. Both P,(6* € S1) and A(v) are increasing in v but
decreasing in Aq.

Proof. Since A; = (x() —0*)2 we have
Py (0% € S1) =Py (r(x@,0%) < r(xV,6)
=Py((6o — 6")* > Ay)

0 +4/Aq 1

L _0,_9*)2
=1 /9*—@ 2m}exp( o )dy

O*+/A0)/w (v — 0*)2
=1 —/ 1 exp -6 dy,
O —Aw N2 2

and

A®W) = E[r(x®, 0*) — r(x@, 6%)]
=—A1+Ey[(6 — 07)?]
=—-A{+.

It follows that both P,(0* € S7) and A(v) are increasing in v but
decreasing in Aq. O

The resampled data sets that pBMms constructs is of the form
dr = (X, ¥])1<izn, Where yi,..., ¥ ~N(6p, 1). As a result, condi-
tionally on 6, the estimate 6, = (Xi_; ¥*)~! I, x;y| based on re-
sampled data is normally distributed with mean 6, and variance v.

Our next result shows that the probability that pBwmS selects
model M(1) is increasing (and in fact differentiable) in v.

Proposition 2. The function (0, 00) > v~ Py(6; € S1) is increasing
and differentiable in v.

Proof. Let ® and ¢ denote the cdf and pdf of the standard normal
distribution. For all t> x(1) it holds that

Py(0r € $110p =t) = Py(—(t — 0)* < —(xV = 6,)* | 6o =t)
=Py(t2 — xM)2 > 2(t —xD)6; | 6p = t)
=Py(6r < (t+x1)/2 | 6o =1t)
= o(x —1)/2VD)), (5)

since (0 —t)/+/v conditional on 6y =t is standard normally dis-
tributed, and for all t < x(1),

Py(6r € $110p = t) = Py(—(t — 0)* < —(xV = 6,)* | 6o =t)
=Py(t> = (x1)2 > 2(t —=x1)0; | 6p =t)
=Py(6; > (t+x1)/2| 6o =t)
=1-0(x" —1)/2VV)). (6)

As a result,

Py (6r € S1)
x( *
= /_OO (1 — d><x(211/;t>> . 21711/ exp (—(t_zi)z>dt
+ /;: @(X(;i/_at) . Zlnv exp (—(t_zi*)z)dt
T (o ) ) e ()

00 ® x(]) —O* 5 1 yZ d
+ _— ——exp| —= g
,/(xm,g*)/\/y N y/ V2 P 2 Y
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where we used the variable substitution y = (t —6*)//v. Write
c:=xM —g* By Leibniz’s rule for differentiation under the inte-
gral sign, it follows that P, (6; € Sy) is differentiable in v, for v > 0,
with derivative equal to

d I Py c?
%]P’,,(Qresl)f—icv (1-®(0))- Jtexp % dy

| c 1 y?
+[w %<1—<1>(2[ y/ >> mexp(—i)dy

+]cv’3/2<1>(0) Lex _e
3 o P

o 1 y2

Lo —yp)—— 2 \a

A ) e G

c/Jv c 1 y2
= —— —y/2 [l p— -Z )d
[ o(ae) a grew (5 )o

00 B 1 y2
- 2 v — - )dy.
[aelsamrn) e gmon(5 )0

By application of the following claim, with y =c¢/v/v, ¢ = ¢, and
foy=1v? \/%7 exp(—y2/2) for all y e R, the statement of the
proposition follows.

Claim. Let ¢ : R — [0, 00) and f: R — [0, co) be symmetric uni-
modal continuous functions with maximum attained at zero. Then,
for all y eR,

v [ "oy -y Fody = y [ o -nmiva.
» ;

_ Proof of Claim. Suppose that y >0. Then ¢(x/2) = ¢(—x/2) and
f(y =x) = f(y +x) for all x>0. By substitution of variables, we
obtain

Y ~ o) -
y / (v -2 f@)dy =y / P2 f(y - x)dx
oo 0
>y fo F(—x/2)f(y + x)dx
2 T By~ F)dy.
Y

Now suppose that y <0. Then @(x/2) = $(-x/2) and f(y —X) <
f(y +x) for all x> 0. By substitution of variables, we obtain

Y ~ o) ~
y f Gy - )2 Fdy =y / P2 f(y - x)dx
o 0
>y /0 F(—x/2)f(y +x)dx

2 T~y F)dy.
Y

This completes the proof of the claim. O

Propositions 1 and 2 show that both the probability that pBms
selects M(1), as well as the expected corresponding performance
gain A(v), are increasing in v. Since A(v) =v — A is strictly in-
creasing in v, we can also define the probability of selecting M(1)
as a function of the performance gain A, as follows.

p(A) = ]P)A,A] (Qr € Sl), for A e (—A1, OO)

Our next result shows that p(A) is increasing and differentiable
in A, and provides explicit expressions for the limiting probabili-
tiesas A | —Aq or A — oo.

Proposition 3. The function p is increasing and differentiable on
(=Aq,00). In addition, if A1 =0 then p(A) = arctan(2)/m for all
A e(Aq, o0), and if Aq >0, then

Alﬁril p(A) =0, and

Alim p(A) =arctan(2)/m ~ 0.3524

Proof. That p(-) is increasing and differentiable on (—Aq, c0) fol-
lows immediately from Proposition 2. To prove the other state-
ments of the proposition, let Z;, Z, be independent standard nor-
mally distributed random variables. For all t> x(1), Eq. (5) implies

IP’,,(Or [S Sl | 9() = t) :]P’,,(Zl < (X(l) —t)/2ﬁ)

t —xM
=]P>v<zl > X )

2v
0+ —xM

t—6*
= <Z1 . ‘m PN
Eq. (6) implies
Py(0; € St | 6o =1t) =Py(Z1 = XV —1)/2v/V)

t—xM
:]PU<21 > )

2Jv
t—60* 0 —xM
=p,(z > |/ + Z—2"|).
“(‘Z‘ZﬁJr 200 )

Since (6p —0*)/+/v is standard normally distributed, it follows

that

)

and for all t <x(1,

]P’,,(@r € 51) = PV(Z] > ‘@

where we write
0+ —xM
N
Suppose A;=0. Then ¢,=0 for all v>0, and therefore
Py(6r € S1) = Py(Zq > |Z2/2]) = arctan(2)/m for all v > 0.

Now suppose that A;>0. Then ¢,#0 for all v>0,
lim,, g [cy| = oo and limy_,» ¢y = 0, and hence lim,, o Py (6r € S1) =
0 and limy_.oo Py(6r € S1) = Py(Z1 > |Z5/2|) = arctan(2)/wr. O

Cyi=

Proposition 3 shows that pDBMs satisfies a key structural prop-
erty of model selection methods: the probability of selecting the
(potentially misspecified) model M(!) is increasing in the result-
ing performance gain A. In addition, when the performance gain is
minimal (A | —A;), pDBMs correctly selects model M(9) with prob-
ability one. Interestingly, if model M(!) happens to be correctly
specified, then the probability of selecting model M(!) is indepen-
dent of v in this example.

Let Zy, Z, be independent standard normally distributed ran-
dom variables. The probability that pBms selects model M(!) can
also be written as

Py(0r € $1) =Pu(Z1 = |(Z2 + ) /2]) = Pu(Zy = |(Z2 + |cv])/2])

= ]P’u(221 >1Zy++/ Al/Ao|>~

where the first equality is shown in the proof of Proposition 3, the

second equality follows by Z, 4 —Z,, and the third equality follows
by Ag = Ey[(fg — 0*)2] = v. Observe that P,(2Z; > |Z, +x|) is dif-
ferentiable in x, for x > 0, with

d d e} —X+2z¢
aIP’,,(ZZl > |Zz +X|) = a/{; [X_ZZI (p(Zz)(p(Zl)dZZdZ]
= [ o220 + o(ox - 220hp @iz

=/Ooo{w(uzmfso(x—Zzl)}so(zoda
<0,

where ¢ is the pdf of the standard normal distribution, and where
the third equality follows by symmetry of ¢. It follows that the
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probability that pBMs selects model M(!) is a decreasing function
of the ratio Aq/Ag.

A similar monotonicity property holds for the probability that
model M outperforms M(®. From the proof of Proposition 1 we
obtain

Py(6* € S1) =Py((60 — 6°)% > Ay)

=Py(Z} > M/v?) =Py(ZF > Ar/A]).
which clearly is decreasing in Al/A%. In contrast to Py(6r € Sy),
P, (6* € S1) is monotone in A;/A2 instead of Aq/A,.

The next proposition gives an exact expression for the perfor-
mance of DBMS.

Proposition 4. Let x®PBMS) := x(01{g, € Sp} + x(D1{6;, € S;}. Let Z
be a standard normally distributed random variables, and let ® de-
note its cdf. Then

+ A ~IE|:] - @(V“Lzm)}

Proof. Let Z;, Z, be standard normally distributed random vari-
ables with pdf ¢ and cdf ®. Let ¢, := (8* —x(M)//v. For all t € R,

Ey[(xPPS) — )2 | 6y = t]
=E,[(x© —0)2 |6y =t.6; € So]-Py(6; €Sp | By =)
+EJ[(xD —0%)2 |0y =t,0, € Si] - Py(6: €51 | Oy =1)
=({t—0")-(1-Py(b; €S |6 =t))
+ (X1 =62 (Py(br €S | 6 =1))

t—xM )

2Jv

= (t —6%)? ~IP’U<Zl <

t—xM
(1) *)2
+ X -0 .Py| Zy > .
( ) v<1 2\/17 )
By integrating,
EV[(X(DBMS) _ 9*)2]
t—xM

- f_:(r_o*)z .pv(z1 <

! exp -0y dt
2Vv | ) V2mv 2v

o , t—xM 1 (t—0%)2
M) _p*)2. _
+ [m(x 0%) ]P’,,(le NG ) T]wexp( o )dt
= Ao-/ yzlP’u<Zl < ‘yzc” )w(y)dy
0 y+ao
SN RIS
= Ao -Ey[ZO(Zs + 0ol /2) |+ A1 - By[1 — D(1Z5 + 6] /2)], (7)

using v = Ag and the variable substitution y = (t — 6*)//v. Now,
if ¢, > 0 then we can replace ¢, by |cy| in Eq. (7). If ¢, <0, then

Zy 4 —Zy and |cy| = —¢y, and we can also replace ¢, by |cy in (7).
Since |cy| = v/ A1/, it follows that

Zr+/A/A
B (™) — 6%)?) A0 E{zgcb('zzm)}

This proves the proposition. [J

The results of Propositions 1-4 are illustrated in Figs. 2 and
3, for #* =05 and x() =0. In this figure, we write p*(v) :=
Py (0* € S7). Fig. 2 illustrates the various monotonicity and limiting
properties stated in Propositions 1-3. Fig. 3 illustrates that model
MO is better than model M(1) when v is small; the figure also
shows that, in that case, the performance of pDBMS is close to that
of M), If v is large then model M(") is better than M(®, and, in
that case, DBMS is able to reduce the loss of M(9),

3.1.3. Difficulty of extending these results to more general decision
problems.

Propositions 1-4 provide detailed insights into the behavior and
properties of pBMs and its relation to A; and Ag. Unfortunately,
the proofs of these propositions also reveal that it is difficult to ex-
tend these insights to more general decision problems. The proofs
depend on explicit expressions of the distributions of 6y, 0, and
61, which in many applications are not available in closed form.
In some problems one might perhaps exploit asymptotic normal-
ity of estimators to obtain structural insights, but since we are
primarily interested in understanding the finite-sample behavior
of DBMS, such asymptotic normality results then need to be ac-
companied by a good understanding of the corresponding con-
vergence rates. Other complications that arise when one tries to
extend these insights to more general decision problems are that
the shapes of the sets Sy and S; can be highly complex, which
hampers the analysis of terms like P(6; € S1), and that the dis-
tribution of the estimators of different models may depend in
a non-trivial way on properties of xq,...,X;. Despite these diffi-
culties to generalize the structural results from Propositions 1-4,
Section 4 suggests that pBMs can successfully be applied to more
complex model selection problems.

3.2. Alternatives to DBMS

To appreciate DBMS it is useful to consider a few alternatives. A
first option is

arg max r(x®, t®@d,)), (8)
ke{0.1.....K}

which is defined if @) c @ for all k. This method evaluates deci-
sion xK) using the resampled estimate 7()(d,) instead of 7(9(d,). A
disadvantage of this approach is the potential lack of consistency:
in general, T()(d;) does not have to converge a.s. to 8* as n— oo,
even when 7(9(d;) and 7(9(dy) do converge a.s. to 8* as n— oo.
As a result, this method may structurally overestimate the perfor-
mance of one of the simplified models M), and thus may select a
model whose corresponding decision has a very poor performance
when evaluated under the true reward function.

This drawback might perhaps be mitigated by considering
arg max rx®, t)(d,)), (9)

ke(0,1,...,K}
for some data-dependent (in)nen that satisfies P(i; =0) — 1 as
n— oo. A drawback of this method is that it is not clear how this
sequence (in)neny should be chosen. The ‘optimal’ way to do this
probably depends on the unknown parameters, thus creating an
additional source of error in the model selection procedure.

Our model selection method is probabilistic: it is based on a
single resampled data set d, which is a realization from D(6). Al-
ternatively, one could consider

(k) +(0)
argks{glﬁ)'(wK}E[r(x L THD(0))) | do]. (10)

This method was considered in an earlier version of this paper. Al-
though this method yields a non-random model selection method,
which perhaps might be preferable for some practitioners, a dis-
advantage is that it does not work for a large class of prob-
lems (including many types of linear programs with parameter
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Fig. 2. p*(v), A(v), p(v), and p(A), with §* = 0.5 and x = 0.
. . ” . .
Loss of X(O), x“), and x(DBMS) rr_uze over the whole dec151.or1 space X? The reaspn is th_alt the deci
2 : " w sions generated by the available models are not just arbitrary num-
—x0 bers: the idea is that the simplified models improve upon the true
== model if the variance of #, is too high; this mitigates the poor
15 x(DBMS) quality of x(9 caused by a high variance of 6. This property is
lost with methods (11) and (12). The method (12) has the addi-
tional disadvantages that (i) it is just equivalent to the original op-
2 timization problem maxyey 1(x, 8g) if T(?) is unbiased and r(x, 8) is
- linear in 6, and (ii) the expectation operator could make the prob-
lem more difficult to solve numerically (or even computationally
05t intractable), leading to additional optimization errors.
’ ) In the example considered in Section 3.1.2, (11) would im-
T el ply that decision x =0, is chosen. Since 6 ~ N(6p,v) and 6y ~
. ‘ N(0*,v), the expected loss of this decision equals
0 0.5 1 15 2 E[m;}vxr(x, 0*) — r(6:, 6)] = E[(B,— 0*)?] = E[E[(6; — 6*)? | H]]
Xe

Fig. 3. Loss of (0, x(1), and x(BMS) " with #* = 0.5 and x(V = 0.

uncertainty). In particular, if the reward function r(x, 6) is lin-
ear in 6, T is an unbiased estimator, and x(® is exact, then
E[r(x®, 1O (D(6y))) | dg] = r(x®,6y), and (10) is equivalent to
simply always choosing model M(9),

A completely different approach is to neglect the decisions sug-
gested by the available simplified models M®, k>0, and to deter-
mine the optimal decision by solving

maxr(x, 70(d,)), (11)
or
max E[r(x. 7©(d,)) | do]. (12)

At first sight Eq. (11) may seem more flexible than pBMs: why
would one restrict oneself to {x© ... x®} when one can opti-

=E[6F + v — 200" + (60%)%] = 2v,

which is twice the loss of the decision x(?) corresponding to model
M), This shows that (11) is worse than simply using model M(®),
In the same example, decision rule (12) would imply that decision
x =x© is chosen, i.e. that model M is always followed, even if
its performance is much worse than that of model M,

3.3. Consistency

DBMS is reward-consistent: under some conditions, the loss in
reward caused by DBMS not selecting the best available model con-
verges in probability to zero as the data size grows large. To for-
mally state this property, we introduce some notation.

Let (xp)neny be an infinite sequence in &, let Dn(0) :=
(x1,Y(%1,0),....%1,Y(xn,0)) for ne N and 0 € ®©), and let ||-||s
be a norm on OO, Let 6,(n) =1t® (D,(0*)) denote the esti-
mate corresponding to model M) based on data D,(6*), and
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let xM)(n):= x®)(O,(n)) be the optimal decision according to
model M®) at stage n, for k=0,1,...,K and neN. Let 6;(n) =
7O (D, (6y(n))) be the resampled estimator using n data points,
and let

k®S) (n) :=arg max r(x®(n),H,(n)))

kef0,1,....K}
be the model selected by pDBMS at stage n, with ties decided in
favor of the smallest maximizer. Finally, let

r(DBMS) (n) = r(x(k(DBMS)(n)), 9*)

be the corresponding reward, and let

r*(n) := max rx®mn),o6%)
ke{0.1.....K}

be the reward using the best of the available models at stage n.

Proposition 5. Suppose that ||6,(n) — 6*||y converges in probability
to zero, r( -, -) is continuous in both variables, and x)(n) converges
in probability as n— oo, for each k =0,1, ..., K. Then

[F®BYS) () — ()| > 0 as n — oo. (13)
In particular, if x®)(n) converges in probability to some x* e
arg max r(x,0*) as n— oo, for some k € {0,1,...,K}, then

Xe
r®s) () £ r(x* 9*) as n - oo. (14)
Proof. Let € >0, and let k*(n) be the smallest maximizer of r(x(¥),
6*) w.r.t. k.
P(|r®™) (n) — 1" (n)| > €)

K

=Y P(k®™)(n) =k and r(x® (n), %) < rx* ™ (n), 0%) —€)
k=0

— 3o TEO M), 6, () = r(x* ) (n), 6:(n))
=< g and r(x® (n), 0*) < r(x® M) (n), %) — ¢

Kk (rx®(n),0,(n)) —rx® ), 0%) +rx® (n), 6*)
= Zﬂ”(z r(x® M (n), 6, (n)) — r(x® ™ (n), %) + r(x® ™ (n), 9*))-
k=0 \ and r(x®(n),8*) < r(x*® ™M) (n), 6*) — ¢

(15)
Fix k € {0,1,...,K}, and let xX)(c0) be the limit point of x(¥)(n) as
n— co. Since x0 (1) & x®) (c0), (6,(n) — 6%||y > 0. and r(-, -) is
continuous in both variables, it follows that
r(x® (n), 6,(n)) — rx® ), 6%) 5 0.
Since
Irx® ™ (n), 6,(n)) — r(x* ™ (n), 6%)|

< sup |r(xP(n),6:(n)) —r(x®(n),6%)].
1e{0.1....K}

this implies that also
Ir® ™ (), 6 (m)) = r(x* ™) (), 6%)] 5 0.
It follows that (15) converges to

K p r(x® (n), 6%) > r(x* ™) (n), 6*) and
Z r(x® (n), 6%) < r(x* ™) (n),0*) — €

)-o

This implies the first statement of the proposition. The sec-

k=0

ond statement follows from observing that x® (n) 5 x* implies
r*(n) £ r(x*,0*), since r(-, -) is continuous. [OJ

Observe that the statement of Proposition 5 is in terms of the
rewards, and not in terms of the probability that pBmMS selects
the best available model. The reason is that it may happen that
r(BMS) (n) < r*(n) a.s. for all n € N, while both r®&¥S) (n) and r*(n)

converge in probability to r(x*, 6*). This can occur e.g. if both the
true model M(® and one of the simplified models, say M), are
correctly specified, and the reward r(x(1)(n), 6*) converges faster to
r(x*, 6*) than r(x(®)(n), #*). It may then happen that the probability
that pBMs selects the best available model (i.e. model M(1) does
not converge to one, but that the reward using DBMs still converges
to the optimal reward. Of course, if there is only a single model
M®) with r(x® (n),0%) 5 r(x*,0%), then Eq. (14) implies that the
probability that pBMs selects this model does converge to one as n
grows large.

Ideally we would like to be able to give a finite-sample per-
formance guarantee for bBms. However, as already alluded to in
Section 3.1, it is very difficult to state such a result in a gen-
eral setting, without making further assumptions on the models,
estimators, and optimization algorithms. In Section 4 we provide
a numerical study of the finite-sample performance of pBMs and
two alternative methods, for two well-known business optimiza-
tion problems.

3.4. Further remarks

It is worth emphasizing that pBms (and in fact any model selec-
tion method) can only be effective if a simplified model may out-
perform the true model with some positive probability. If this is
not the case, then always using the true model is better than any
model selection method that deviates from the true model with
positive probability. Decision-based model selection is not a magic
bullet: its effectiveness depends not only on the quality of the
selection method, but also on the quality of the simplified mod-
els under consideration, in particular their ability to generate bet-
ter decisions than the true model for some initial data sets. For
example, the fact that a simple multinomial logit (MNL) model
outperforms a sophisticated machine learning model in Feldman
et al. (2019) strongly suggests that the MNL model captures at least
some of the essential structure of the problem.

Finally, our analysis of DBMs assumes that model M(® is cor-
rectly specified: there is some ‘true’ parameter 6* ¢ ©(), The as-
sumption that a posited model is correctly specified for a given
data sequence is standard in the statistics literature and perhaps
unavoidable for purposes of analysis; for example, practically all
consistency and convergence-rate results on estimators are only
meaningful in practice if one assumes that the data is generated
by the postulated model, or perhaps by a model that, in some
sense, is ‘close’ to the postulated model. In real-life applications,
however, it is reasonable to expect that even M(® is not correctly
specified. Nothing hinders a decision maker to still apply bBMs in
this case; even our consistency result in Section 3.3 remains valid
(the proof of Proposition 5 uses nowhere the fact that 6* is the
‘true’ parameter). Of course, ‘reward-consistency’ should then not
be interpreted as convergence to the ‘optimal reward’ per se, but as
convergence to r( x(®(6*), 8*), the optimal reward with respect to
model M(® and parameter 6*. The quality of the decision x(©)(6*)
(compared to the optimal decision with respect to the ‘true’ data-
generating mechanism) depends of course on how accurate the
(now misspecified) model M(®) describes the true data-generating
mechanism.

Unfortunately, it is in general not possible to know with cer-
tainty whether ones model is correctly specified: it is possible to
construct examples where an adversarial Nature tries to make a
decision maker believe in her model and corresponding optimal
decision, whilst at the same time a different, a better decision is
available. This, and related questions about detecting the validity
of the most general model that one has at ones disposal, is outside
the scope of this paper.
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4. Numerical illustrations . exp(6;)
Py (Y (%) = ) = Ts s
. . . 1+ Zkex exp(fk)
We illustrate the performance of DBMS by applying it to two 1

well-known business optimization problems: assortment optimiza- Py(Y(x) =0) = W’ (16)
tion and the newsvendor problem. These are two different types of + 2 kex €XP (O
problems. The first is a discrete optimization problem where the for all j  x. The unknown parameter 6 = (6, ..., Om) is assumed to

unknown parameter is finite-dimensional, and where the distribu-
tions of the random observations Y(x) depend on the decisions x.
The second is a continuous optimization problem where the un-
known parameter is infinite-dimensional, and where the distribu-
tions of Y(x) are independent of x.

4.1. Assortment optimization

Assortment optimization consists of determining which set (‘as-
sortment’) of products a firm should offer to potential customers in
order to maximize expected revenue.

Setting. A seller offers a subset (called an ‘assortment’) of m ¢
N products {1,...,m} for sale to its potentials customers. Selling
a single item of product j gives revenue r; to the firm, for some
r1,...,m > 0. Upon being offered an assortment, a customer either
buys nothing, in which case the firm earns nothing, or buys exactly
one of the products, say product j, from the assortment, in which
case the firm earns r;.

A decision corresponds to a nonempty subset x c {1,...,m},
and the set of feasible decisions X is the collection of all such
subsets. Let Y(x) denote the product that a customer buys when
being offered assortment x € X. For each assortment x, Y(x) is
multinomially distributed on xU{0}; here Y (x) = 0 corresponds to
buying nothing. The probability distribution of Y(x) is given by
PY(X)=j)= ij_x, for all jex and xe X, and P(Y(x) =0)=1 -
Pjex ijfx for all x € &, for some unknown parameter * = (H;fx |je
X, X € X) in the parameter space

OO =[x jexxeX)|0=<6y
<Y Oix<1forall jexandxex}.
iex
We deliberately keep ®(® very general, without imposing assump-

tions such as 6;, < 0;,, when j e X’ c x. The expected reward func-
tion r: X x ®0 — R is given by

r(x,0) = rifx.

iex
The estimator 7(®) maps data d = (x4, y1, ..

@) = (7)) [jex xe ),

., Xn,Yn) to

where
Hie{l,...on}: () = (x DY +1
|{ie{1,4..,n}:x,-:x}|+1 '

©) () —
Tix (d) =

Here |A| denotes the cardinality of a set A. This is a small modifi-
cation to the ordinary relative-frequency estimator |{i € {1,...,n}:
i, y1) = (x, j)}|/|{i e{l,..., n} : x; = x}|; because this latter ex-
pression is undefined if the denominator equals zero, we add one
to the frequency of each alternative (including the no-purchase op-
tion).

The simplified model M(!) assumes that customers choose ac-
cording to the so-called multinomial logit model. This is a widely
used discrete-choice model that exhibits certain pleasant proper-
ties (such as a concave likelihood function) but is known to be
misspecified in several cases (illustrated, for example, by the in-
famous ‘red bus | blue bus paradox’). According to the multino-
mial logit model, Y(x) is multinomially distributed on x U {0}, for all
X € X, with choice probabilities Py (Y (x) = j) = 0 for all j¢x, and

lie in ® =R™, and is estimated with maximum likelihood esti-
mation.

For both the true model M(© and the simplified model M(1),
optimization is exact and is done by comparing the revenues of
all possible assortments. (Note that this is only computationally
tractable if m is not too large).

Numerical experiments. For each number of products
me{3, 5, 10} and each size of the initial data set ne
{10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10, 000, 20, 000, 50, 000}
we run 10,000 simulations. In each simulation we run three ex-
periments:

e in experiment A, the choice probabilities 8 are drawn uniformly
at random, as follows: for each I € {1,...,m} and for each as-
sortment x consisting of exactly [ products, the choice prob-
abilities {0]jexU{0}} are drawn uniformly at random from

the (I + 1)-dimensional simplex Aj,; :={(z}....,21) € RHT |
Yizi=121,...,2.1 = 0}.

 in experiment B, the choice probabilities 6 follow a parsimo-
nious Generalized Attraction Model (Gallego, Ratliff, & Shebalov,
2015): we draw random 7, vy, ..., Uy from the uniform distri-
bution on (0,1), and set

Vj
B 1+Zisxvi+n2i¢xvi’
« in experiment C, the choice probabilities 6§ follow a multino-

mial logit model: we draw random vy, ..., vy from the uniform
distribution on (0,1), and set

0ix (Jex,xeX).

vj
1 + Ziex % 7

In experiment A, the multinomial logit model M() is almost
surely misspecified, whereas in experiment C it is always correctly
specified. Experiment B is somewhat in between: the multinomial
logit model is misspecified, but, especially if n is small, the choice
probabilities are almost of the form (16). This suggests that, for
sufficiently small n, model M(!) may produce good decisions in ex-
periment B, despite the fact that the model is misspecified.

The revenues corresponding to the individual products are set
tor;=100-i/m,i=1,..., m. The assortments xq, ..., Xn in the ini-
tial data dy are chosen uniformly at random from .

For each experiment we determine the optimal revenue un-
der full information (Opt), under model M©®, model M), and
under pBMS. We also test two alternative model-selection meth-
ods: Akaike Information Criterion (AIC), and 5-fold Cross-Validation
(CV) on the estimated reward function. In particular, AIC chooses
the model that minimizes AIC(k), k € {0, 1}, where ties are decided
in favor of model M(®), and where

Ojx= (JexxeX).

AIC(0) := -2 log7yx (do) +2m2™", (17)
i=1
AIC(1) := =2 "10g P, gy (Y () = ¥i) +2m; (18)

i=1

here t(V)(dy) is the maximum likelihood estimator of the unknown
parameters in model M(1). Regarding (17), note that the number of
free parameters in model M() is equal to 31" i('}) = m2m-1.
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Table 1 Table 2

Average reward, 3 products. Average reward, 5 products.
n Opt MO M DBMS AIC (@Y n Opt M©) M DBMS AIC cv
10 68.98 59.60 55.46 58.59 55.46 58.67 10 77.70 61.41 58.43 60.78 58.43 60.28
20 68.98 61.73 55.93 60.34 55.96 60.51 20 77.70 62.47 59.75 61.61 59.75 61.60
50 68.98 64.63 56.37 63.40 60.55 63.29 50 77.70 64.96 60.42 63.53 60.42 63.71
100 68.98 66.37 56.39 65.60 65.40 65.52 100 77.70 67.67 60.50 65.95 60.95 66.00
200 68.98 67.52 56.36 67.07 67.38 67.18 200 77.70 70.67 60.61 69.12 60.63 69.08
500 68.98 68.36 56.34 68.15 68.36 68.31 500 77.70 74.04 60.70 73.29 73.88 73.72
1000 68.98 68.67 56.26 68.57 68.67 68.66 1000 77.70 75.83 60.81 75.38 75.83 75.82
2000 68.98 68.82 56.28 68.76 68.82 68.82 2000 77.70 76.75 60.86 76.53 76.75 76.75
5000 68.98 68.92 56.31 68.90 68.92 68.92 5000 77.70 77.32 60.93 77.24 77.32 77.32
10000 68.98 68.95 56.29 68.94 68.95 68.95 10000 77.70 77.51 60.90 77.49 77.51 77.51
20000 68.98 68.97 56.31 68.96 68.97 68.97 20000 77.70 77.61 60.88 77.59 77.61 77.61
50000 68.98 68.98 56.31 68.98 68.98 68.98 50000 77.70 77.66 60.93 77.66 77.66 77.66

(a) Experiment A: general choice model (a) Experiment A: general choice model
n Opt M®©) MM DBMS AIC v n Opt MO M DBMS AIC v
10 38.97 33.66 36.95 34.81 36.95 35.93 10 43.14 36.91 40.28 37.63 40.28 39.17
20 38.97 34.26 37.45 35.56 37.45 36.53 20 43.14 35.89 41.02 37.27 41.02 39.57
50 38.97 35.39 37.67 36.22 37.66 37.22 50 43.14 3541 41.46 37.63 41.46 40.61
100 38.97 36.33 37.69 36.84 37.67 37.52 100 43.14 36.20 41.57 38.32 41.57 41.14
200 38.97 37.11 37.70 37.38 37.70 37.65 200 43.14 37.52 41.66 39.04 41.66 41.49
500 38.97 37.89 37.71 37.96 37.89 37.93 500 43.14 39.36 41.71 40.07 41.71 41.65
1000 38.97 38.29 37.70 38.25 38.18 38.18 1000 43.14 40.48 41.72 40.89 41.72 41.70
2000 38.97 38.55 37.69 38.49 38.51 38.48 2000 43.14 41.30 41.73 41.46 41.73 41.78
5000 38.97 38.76 37.69 38.71 38.77 38.76 5000 43.14 42.07 41.75 42.08 41.95 42.22
10000 38.97 38.86 37.69 38.82 38.87 38.86 10000 43.14 42.46 41.76 42.43 42.5 42.59
20000 38.97 38.90 37.69 38.88 38.91 38.90 20000 43.14 42.71 41.76 42.65 42.78 42.78
50000 38.97 38.94 37.69 38.93 38.94 38.94 50000 43.14 42.92 41.75 42.88 42.95 42.95
(b) Experiment B: generalized attraction model (b) Experiment B: generalized attraction model

n Opt M© MM DBMS AIC (&% n Opt M© MM DBMS AIC v
10 40.44 37.11 39.51 38.19 39.51 38.29 10 46.83 44.23 45.32 44.83 45.32 44.36
20 40.44 37.21 39.96 38.38 39.96 38.84 20 46.83 4311 46.12 44.34 46.12 4437
50 40.44 37.73 40.27 38.66 40.25 39.57 50 46.83 42.20 46.58 44.14 46.58 45.26
100 40.44 38.15 40.37 38.90 40.31 39.89 100 46.83 42.16 46.71 44.10 46.71 45.86
200 40.44 38.63 40.40 39.19 40.32 40.06 200 46.83 42.59 46.78 4413 46.78 46.49
500 40.44 39.23 40.43 39.58 40.35 40.19 500 46.83 43.54 46.81 44.53 46.81 46.73
1000 40.44 39.59 40.43 39.84 40.38 40.27 1000 46.83 44.28 46.82 44.98 46.82 46.80
2000 40.44 39.87 40.43 40.04 40.41 40.33 2000 46.83 44.97 46.83 45.48 46.83 46.81
5000 40.44 40.13 40.44 40.22 40.42 40.37 5000 46.83 45.68 46.83 45.99 46.83 46.82
10000 40.44 40.26 40.44 40.31 40.43 40.40 10000 46.83 46.06 46.83 46.28 46.83 46.83
20000 40.44 40.34 40.44 40.37 40.43 40.42 20000 46.83 46.35 46.83 46.49 46.83 46.83
50000 40.44 40.40 40.44 40.41 40.44 40.43 50000 46.83 46.57 46.83 46.65 46.83 46.83

(c) Experiment C: multinomial logit model

(c) Experiment C: multinomial logit model

CV chooses the model that minimizes CV(k), k{0, 1}, where
ties are decided in favor of model M(®), and where

1 N 2
V() = 2 3 [ (PO (i do\dp) —1y,) (19)
=1 ied,
here
PO d) =Y Y (),
jex

PO d) = " 1iPray @) (Y (X) = J).

jex

are the estimated reward functions under model M(® and M) re-
spectively, based on a data set d; ry:=0, and d; := {(x;,y;) | i =
1+d-"1ny5,...,In/5}, 1=1,...,5, is a decomposition of the ini-
tial data set dy in five mutually disjoint sets of equal size.

The average rewards in the simulations are reported in
Tables 1-3. All standard errors are smaller than 0.18.

Outcomes. In experiment A, model M(© outperforms model M(1)
for all tested value of n and m. The average reward under model
M© converges to the optimal average reward as n grows large,
but the average reward under model M(!) appears to converge to
a strictly lower value. The average loss due to using model M(!)
instead of model M©® can be more than 20% (if n>2000 and
m =5, or if n =50,000 and m = 10). DBMS is at most 2.5% (m = 5,

n = 100) away from the average performance of M, and, for suf-
ficiently large n (n>200 in case m =3, n>1000 in case m =5,
and n>20000 in case m = 10), pBMs is within 1.0 percent of the
average reward under model M. Interestingly, DBMs may yield
a larger average reward than both M(® and M(); this occurs for
m =10 and n = 10, 100, 200.

All three model selection criteria pBMmS, AIC, and CV outperform
the other two of these criteria in some instances: DBMS for m = 3,
n=>50,100 and m =5, n =10, 20,200 and m = 10, n<2000; AIC
for m =3, n =200, 500, 1000, 2000 and m = 5, n = 500, 1000; and
CV for m=3, n=10,20 and m=5, n=50,100 and m =10, n=
5000, 10000, 20000. For all other combinations of m and n there
is no single best model selection method among these three.

AIC can lose up to 13.2% of the reward of pBMS (m =10, n=
10, 000), but DBMS loses never more than 1.0% of the reward ob-
tained by AIC (m =10, n = 20, 000). The performance of CV and
DBMS are closer to each other: CV is at most 1.7% worse than DBMS
(m =10, n=10), and pBMS is at most 1.8 percent worse than CV
(m = 10, n = 10, 000).

In experiment B, model M(1) may outperform model M. This
occurs if m=3 and n<200, m=>5 and n<2000, or m =10 and
n is any of the tested values. For all other pairs m, n, model M(©)
is better than M(1). The loss of using model M(® instead of model
M® can be more than 30 percent (m = 10, n = 1000, 2000), and
conversely, the loss due to using model M(!) instead of model M(®)
can be up to 3.2 percent (m = 3, n =50, 000).
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Table 3 or equal to the average reward under AIC or CV. The reason is that

Average reward, 10 products. AIC almost always selects model M(1), which outperforms M(® in
n Opt MO MM DBMS AIC v all instances: for m = 3, AIC has average reward within 0.2% of that
10 36.64 68.05 64.66 68.05 64.66 66.87 of M, and for m = 5, 10, AIC has exactly the same average reward
20 86.64 68.05 66.41 68.00 66.41 67.51 as MV,
50 86.64 68.01 67.47 67.99 67.47 67.80 An overall conclusion from these three experiments is that
100 86.64 67.97 67.68 68.03 67.68 67.84 there is no clear winner between pBMs, AIC, and CV. In the most
;gg gg:g: g;:g? g;:g; gg:g? g;:g; g;:;g general case c.on.sidered in experimgnt A, bth pBMs and CV have
1000 86.64 70.09 68.01 69.37 68.01 69.20 a somewhat similar performance, with sometimes one outperform-
2000 86.64 72.21 68.08 70.87 68.08 70.65 ing the other and sometimes the other way around. Both outper-
5000 86.64 76.23 68.06 74.55 68.06 75.12 form AIC by a (sometimes) large margin. In experiments B and C,
10000 86.64 79.93 68.07 78.45 68.07 79.91 where the multinomial logit model is correctly specified or ‘almost’
20000 86.64 82.96 68.07 82.17 82.96 82.96 .
50000 36.64 85.12 68.07 34.94 85.12 85.12 correctly specified, AIC performs better than pBms and CV.

(a) Experiment A: general choice model Regarding DBMS, we observe that the largest relative amount

n Opt MO MM DBMS AIC cv that pBMs loses compared to M(® (i.e. 2.6 percent in experiment
10 48.08 38.25 44.01 38.30 44.01 42.65 A and 0.2 percent in experiment B) is a magnitude smaller than
ég 22:82 ;3:;2 22;; ;S:i? 22;; jg:l? the largest relative amount the}t DBMS can improve upon MO (i._e.
100 48.08 37.36 45.85 38.14 45.85 45.73 more than 8 percent n experlment B, and 4.8 percent 1n experi-
200 48.08 36.62 45,94 37.91 45.94 45.90 ment C).
500 48.08 35.59 45.98 37.87 45.98 45.97 Regarding AIC, we observe a ‘sudden’ jump in the average re-
5888 32'82 32;‘71 22'88 gzgi 22'88 22'88 ward in experiment A if m=5 and n is between 200 and 500,
5000 48,08 37.49 46,00 2012 46,00 46,00 and even more pronounced if m =10 and n is between 10,000
10000 48.08 40.01 45.99 41.75 45.99 45.99 and 20,000. AIC almost behaves like an indicator function: if n
20000 48.08 42.44 45.99 4327 45.99 45,99 is smaller than a certain critical value it selects model M(1) with
50000 48.08 4473 45.99 45.02 45.99 45.99 high probability, and if n is larger than this value then it selects
. Op(tb) ExPe”;;:gf“ B: ger;;(rﬂhzed att;zcwtllson mOd:llc ov model M© with high probability. This behavior is illustrated in
10 56.42 5526 53.99 5530 53.99 54.70 Fig. 4, where we repeat experiment A for m = 10 products and n =
20 56.42 55.08 55.43 55.22 55.43 55.25 17,000, 17, 100, 17, 200, ..., 20,000 (and with an increased num-
50 56.42 54.59 56.08 54.97 56.08 55.56 ber of simulations of 80,000 instead of 10,000 for each n, because
;gg gg':‘é g;'gg gggz gi'gg Zgéi 22;2 of the finer granularity of n). The figure shows the relative fre-
=00 st 2152 2638 233 2638 2623 quency that pBwms, AIC, and CV select model M(©, together with
1000 56.42 50.82 56.40 53.07 56.40 56.35 the ‘optimal’ model selector that always selects the best of the two.
2000 56.42 50.40 56.41 52.81 56.41 56.41 It turns out that, for these values of n, model M is preferable to
5000 56.42 50.60 56.41 52.75 56.41 56.41 MM in about 89-91% of the cases; DBMs is close but slightly under-
;gggg Zg:g g;gg gg:g ggg gg:g Zg:g estimates this with approximately two percentage points, and CV
50000 56.42 53.46 56.42 54.07 56.42 56.42 Stl‘ucturally overestimates this fraction to 1.0. HOWeVer, AIC hardly

(c¢) Experiment C: multinomial logit model

In the cases that M is better than M, pBMs can improve
upon M(® by more than 8 percent (m = 10, n = 1000, 2000). In the
cases that model M(© is better than M), pBMs loses never more
than 0.2% of the average reward of M(®). Again we see that DBMS
may yield a larger average reward than both M(® and M(; this
occurs for m =3, n =500 and m =5, n = 5000.

Again all three model selection criteria pBMS, AIC, and CV out-
perform the other two of these criteria in some instances: pBms for
m =3, n=500,1000; AIC for m =3, n¢{500, 1000} and m =5,
n <1000 or n = 50,000, and m = 10, n<1000; and CV for m =5,
n = 2000, 5000, 10, 000. For all other combinations of m and n
there is no single best model selection method.

AIC seems to be the winner in this experiment: bBMS can lose
up to 17.7% (m = 10, n = 500) and CV up to 3.5% (m =5, n=20),
compared to AIC, whereas AIC loses up to 0.3% compared to DBMS
(m =5, n=5000) and 0.6% compared to CV (m =5, n = 5000).

In experiment C, the multinomial logit model M(") is correctly
specified, and outperforms model M(® in all instances. Both the av-
erage reward of M(©) and M(1) converge to the optimum as n grows
large, but the reward of M(1) appears to converge faster than that
of M(9), The average loss due to using model M) instead of model
M™ can be more than 10 percent (m = 10, n = 2000, 5000). DBMS
always outperforms M(®); the relative improvement can be up to
4.8% (m =10, n = 2000).

AIC is the clear winner in this experiment: for all pairs m, n
except m = 10, n = 10, the average reward under AIC is larger than

ever selects model M(® if n<17, 000, and almost always selects
model M@ if n>20, 000. This sudden change may explain the
poor performance of AIC in Experiment A, compared to DBMS or
CV.

4.2. Newsvendor problem

Our second numerical illustration applies DBMS to the newsven-
dor problem, an archetypal optimization problem in inventory
management. The problem consists of determining an order quan-
tity that optimally balances between the costs of stock-outs (‘back-
order’ costs) and overstocking (‘holding’ costs). The newsvendor
problem has been studied in many variants; we consider the most
basic version.

Setting. The decision to take is an order quantity x from the
nonnegative reals X = [0, co). After selecting x, an observation of
demand Y(x) is observed. The distribution of Y(x) is independent
of the decision x, and we write Y = Y (x). The unknown cumulative
distribution function (cdf) of Y is denoted by 0* and lies in the
collection ®(® of cdfs of nonnegative random variables with finite
expectation:

00 — { all cdfs 6 : (—o00, 00) — [0, 1] with

lim6(y) = 0 and / ydoy) < oo}.
y10 0
The expected cost function ¢ : X x ®©@ — [0, o) is defined as

c(x.60) = h/xo(x—y)de(yﬂ—b/
y=

y=x

00

¥ —x)do(y). (20)
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Fig. 4. Relative frequency of selecting model M(®, as function of n.

for some known holding costs h > 0 and backorder costs b > 0. Note
that this problem is about costs minimization instead of reward
maximization. We can still use pBMs by applying it to the reward
function r(x,0) := —c(x, 0).

The demand distribution is estimated by the empirical distribu-
tion function: 7(®) maps a data sequence (x1,y1, ..., Xn,Yn) to the
distribution function

1 n
ywﬁz;l{y,sy}. (21)
1=
Optimization is exact: for each € ®(©), (20) is minimized by
X(O)(O):zinf{zzo:e(z)zb_lih}. (22)

If @ has an inverse 0~ then x @ (0) =6-1(b/(b + h)).

The simplified model M(1) assumes that demand Y(x) is ex-
ponentially distributed with mean 6, for all xe X and some
0 e ®M):=]0, co). The estimator (1) maps data (x1,¥1,...,Xn,¥n)
to the sample mean (y; +...+Yyn)/n, and optimization is again
exact; for exponential distributions with mean 6, Eq. (22) equals
x 1 (8) = —01log(h/(b+ h)).

Numerical experiments. Fix h = 1. For each backorder costs
be{2.0, 1.5, 1.0, 0.5} and each size of the initial data set ne{10,
50, 100, 500, 1000} we run 10,000 simulations. In each simulation
we run three experiments:

e in experiment A, we let Y be lognormally distributed with mean
m and variance v, where we draw m uniformly at random from
[0,5] and v uniformly at random from [0, 25];

« in experiment B, we let Y be lognormally distributed with mean
m and variance m?, where we draw m uniformly at random
from [0,5];

e in experiment C, we let Y be exponentially distributed with
mean m, where we draw m uniformly at random from [0,5].

In experiment A the exponential-demand model M) is al-
most surely misspecified, whereas in experiment C it is always
correctly specified. Experiment B is somewhat in between: the
exponential-demand model is misspecified, but our requirement
Var(Y) = E[Y]? on Y is satisfied by exponentially distributed de-
mand. Thus, in experiment B, the distribution of Y is, in some
sense, closer to an exponentially distributed random variable than
in experiment A, which might imply that model M(!) sometimes
outperforms the true model for sufficiently small n.

The decisions xq, ..., Xp in the initial data set are drawn uni-
formly at random from the interval [0,5]. Note that these quanti-

ties are only needed to apply cross-validation, and are not used by
DBMS.

For each experiment we determine the optimal costs under full
information (Opt), under model M(®, model M(!), and under DBMs.
We also test 5-fold cross-validation (CV), which chooses the model
that minimizes CV(k), k{0, 1}, where ties are decided in favor of
model M, and where

5
V) =5 Y 3 (€ 0o do\d) — )’ (23)

=1 ied,

here

. 1 5 N
tO(x:d) = 3 Eh(x -y +bFi —-0",
i=
5 X _ 0 _
cOd)i=h [ (x—y)e?7gdy+b / (y —x)e ¥ 7 dy
y=0 y=

= h(x + (exp(=x/y) — 1)y) + bexp(-x/y)y.

are the estimated cost functions under model M(® and M) re-
spectively, based on a data set d = & Vi) 1<i<is ¥ = %Z?:ly,-, ¢ =
h(x; —yi)* +b(y; —x;)™ are the observed costs associated to (x;,
y;), fori=1,..., n, and d; := {(x;,y;) |i=1+({-1n/5,..., In/5},
I=1,...,5, is a decomposition of the initial dy in five mutually
disjoint sets of equal size. We omit comparing pDBMS to AIC, since
the true model is infinite-dimensional.

The average costs in the simulations are reported in Tables 4-6.
All standard errors are smaller than 0.02.

Outcomes. In experiment A, model M(© outperforms model M(1)
in all instances of b and n. The average costs under model M(1)
can be more than 10 percent higher than that of M(® (b=0.5,
n>50). The average costs under DBMs are close to that of model
M©: never more than 0.6 percent higher (b= 1.0, n=10), and
for n> 50 the difference is never more than 0.3% (b= 1.5, n = 50).
Cross-validation performs worse than pBMS in all instances of b
and n. It loses up to 3.9% compared to M (b=1.0, n = 10), and
up to 2.0% if we only consider n>50 (b= 1.5, n = 50).

In experiment B, model M(1) sometimes outperforms model
M), The average costs under model M(® can be more than 1.2%
higher than under M) (b= 0.5, n = 10), and conversely, the aver-
age costs under model M(!) can be more than 1.5 percent higher
than under M (b = 0.5, n = 1000). DBMS is always within 0.7% of
the best performing model (b= 0.5, n =10), CV is always within
0.9 percent (b=0.5, n=50). There is no clear winner between
pBMs and CV: both sometimes outperform the other, but never by
a large margin. The costs under pBMs can be up to 0.2% higher

=X
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Table 4 Table 6
Average costs in experiment A. Y~ lognormal(m, v). Average costs in experiment C. Y~ exponential with mean m.
n Opt M© M DBMS (Y n Opt MO MM DBMS @Y
10 242 2.59 2.66 2.59 2.67 10 2.75 297 2.89 2.94 2.92
50 242 2.46 2.52 2.46 2.51 50 2.75 2.80 2.78 2.79 2.78
100 242 2.44 2.51 245 2.48 100 2.75 277 2.76 277 2.76
500 242 2.43 2.49 243 2.44 500 2.75 2.75 2.75 2.75 2.75
1000 242 243 2.49 243 2.43 1000 2.75 2.75 2.75 2.75 2.75
(@)b=2.0 (@Q)b=2.0
n Opt M© M DBMS v n Opt M©) MM DBMS (@Y
10 1.98 2.09 217 2.10 2.16 10 2.29 245 2.39 243 2.41
50 1.98 2.00 2.07 2.01 2.04 50 2.29 2.33 2.31 2.32 2.32
100 1.98 1.99 2.05 1.99 2.02 100 2.29 2.31 2.30 2.31 2.30
500 1.98 1.98 2.04 1.98 1.98 500 2.29 2.29 2.29 2.29 2.29
1000 1.98 1.98 2.04 1.98 1.98 1000 2.29 2.29 2.29 2.29 2.29
(b)b=15 (b)b=15
n Opt MO MM DBMS v n Opt M©) MM DBMS (@Y
10 1.46 1.53 1.62 1.54 1.59 10 1.73 1.84 1.79 1.83 1.81
50 1.46 1.47 1.56 1.48 1.50 50 1.73 1.76 1.75 1.75 1.75
100 1.46 1.46 1.55 1.47 1.48 100 1.73 1.75 1.74 1.74 1.74
500 1.46 1.46 1.54 1.46 1.46 500 1.73 1.74 1.73 1.74 1.73
1000 1.46 1.46 1.54 1.46 1.46 1000 1.73 1.74 1.73 1.73 1.73
(c)b=1.0 (c)b=1.0
n Opt M© MM DBMS (&% n Opt M© MM DBMS v
10 0.83 0.88 0.96 0.89 0.90 10 1.01 1.08 1.03 1.07 1.04
50 0.83 0.84 0.93 0.84 0.85 50 1.01 1.03 1.02 1.02 1.02
100 0.83 0.84 0.93 0.84 0.84 100 1.01 1.02 1.02 1.02 1.02
500 0.83 0.83 0.92 0.83 0.83 500 1.01 1.02 1.01 1.01 1.01
1000 0.83 0.83 0.92 0.83 0.83 1000 1.01 1.01 1.01 1.01 1.01
(d)b=05 (d)b=05
Table 5
Average costs in experiment B. Y~ lognormal(m, m?). M is misspecified, but if M) is better than M, then part of
n opt MO MO DBEMS v the potential gain is captured by pBms. Cross-validation performs
worse than DBMS in experiment A, comparable to DBMS in exper-
10 242 2.60 2.58 2.59 2.59 . ¢ B. and better than DBMS i . ¢ C. The 1 t ob
50 242 246 246 246 246 iment B, and better than in 0ex'perlmen . The largest ob-
100 2.42 2.44 2.45 2.44 2.44 served gain of CV compared to M is 3.6%, and the largest loss
500 2.42 2.42 243 2.42 2.42 3.9%. For DBMS these values are 1.4% and 0.6%. Thus, in some sense,
1000 242 242 243 242 242 pBMs is closer to M and CV is closer to M(1): both the highest
0 opt M(D)(a) bZZ‘OMm DEMS v gains and the largest losses of DBMs compared to the true model
; 0
10 1.99 212 211 211 211 are smaller than the gains and losses of CV compared to M(©®),
50 1.99 2.02 2.02 2.02 2.02
100 1.99 2.00 2.01 2.01 2.00 5. Concluding remarks
500 1.99 1.99 2.00 1.99 1.99
1000 1.99 1.99 2.00 1.99 1.99 . . . .
(b)b=15 Data-driven decision making revolves around mathematical
n opt M@ M DBMS &% models, statistical estimators, and optimization algorithms. While
10 1.49 1.57 1.56 1.57 1.57 the properties of estimators and optimization algorithms have
50 1.49 1.50 1.50 1.50 1.50 been studied extensively in a wide variety of contexts, the ques-
100 1.49 1.50 1.49 1.50 1.50 tion how fo select thematical model f decisi
500 1.49 1.49 1.49 1.49 1.49 ion how to select a proper mathematical model from a decision-
1000 1.49 1.49 1.49 1.49 1.49 making viewpoint has received little attention in the literature. In
(c)b=1.0 many situations, for example, there is a choice between a simple
n Opt M© MM DBMS v model and more complex model. Determining which of these mod-
;g g'gg 8'23 8‘32 8‘2; 8‘3; els leads to the best decision is a very relevant question, but the
100 0.86 087 0.88 087 087 existing literature does not describe a generic method to answer
500 0.86 0.86 0.88 0.86 0.86 it. An extensive model-selection apparatus has been developed in
1000 0.86 0.86 0.88 0.86 0.86 the past decades, but these methods either do not take quality-of-
(d)b=05

than under CV (b= 1.5, n = 10), and the costs under CV can be up
to 0.7% higher than under pBms (b = 0.5, n = 50).

In experiment C, model M(!) outperforms model M© in all in-
stances of b and n; the average costs under M(© can be up to 4.7%
(b= 0.5, n = 10) higher than under M(*). pMs improves upon M(©
in all instances, by up to 1.4% (b = 0.5, n = 10). CV does better than
DBMS in all instances, and can improve upon M(® by up to 3.6%
(b=0.5, n=10).

An overall conclusion from these three experiments is that
sticking to a single model M(® or MV may induce losses up to
10 percent. The costs under DBMsS stay close to that of M(®) in case

decisions as the discriminating factor between models (and thus,
in a sense, decouple model selection from optimization), or can
only be applied to a subset of the class of decision-problems that
we consider.

This paper aims to take a step in the direction of connecting
model-selection with data-driven decision making. To this end, we
propose a generic decision-based model selection method, named
DBMS, that judges the quality of a model by the (estimated) qual-
ity of the decision it supports. The method is applicable to a wide
class of decision-problems. It is easy to use in practice, does not
require large computation times, and does not depend on hyper-
parameters that are difficult to tune. Under some conditions, the
method is reward-consistent (meaning that the reward using DBmS
converges to the optimal reward). Our numerical illustrations show
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that DBMS is frequently on par and sometimes better than existing
model-selection methods; this suggests that DBMS is a step in the
right direction, but that there also still is room for further improve-
ment and fine-tuning of the method.

The main practical insight of this work is that decision mak-
ers who have to select a model for a data-driven decision problem
should not confine themselves to a single model; instead, they can
select multiple models with different degrees of complexity, and
use a decision-based model-selection method such as the one pro-
posed in this paper to determine, for each data set at hand, which
model is expected to produce the best decision.

Whilst the focus of this paper is on static problems, we ex-
pect that decision-based model selection can be a powerful tool
in dynamic decision problems under uncertainty (so-called multi-
armed bandit problems). In the majority of these problems, the
model is fixed throughout the whole time horizon. As an alter-
native, we suggest to incorporate decision-based model selection
into the multi-armed bandit framework, such that the complexity
of the model upon which decisions are based grows with the size
and richness of the data that is available. In other words, the com-
plexity of the used model should be ‘justified’ by what the data
can support, and when the data set is growing, the complexity of
the model should be growing as well. Integrating decision-based
model selection method in such dynamic decision making prob-
lems may lead to significant improved performance in a wide vari-
ety of contexts. In several of such applications, dynamic model se-
lection can only be implemented if its computation times are suf-
ficiently small. Because the method proposed in this paper scores
well on this aspect - compared, for example, to cross-validation -
it may lend itself very well for such dynamic decision-making ap-
plications.
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Appendix A. loss incurred by suboptimal model selection
criteria

In this supplementary section we show by an example that
model selection based on assessing the quality of the estimated
parameters or of the estimated reward function, instead of the
quality of decisions, may induce unbounded losses. To this end,
consider the linear program

max r(x,0) :=max(@ —a)x st. 0<x<1,

for « >0, 6 € R, which is maximized by x* := 1{6 — « > 0}. The
value of o is known, the value of 6 is unknown, but it can
be estimated from data of the form (x;, y;);<j<n, where n is
an integer, Xq,...,Xn € [0,1] are nonrandom and not all zero,
yi=0x;+¢ fori=1,...,n, and €4,..., €, are iid. normally dis-
tributed random variables with mean zero and (unknown) vari-
ance o2 > 0. The ordinary least squares estimates of # and o2 are

Oy 1= (X1, X))y xypand 62 :=n"1 YL (i — Oox;)2, the cor-
responding estimated objective function is 7y : X — (éo —a)x, and
the corresponding estimated optimal decision is &j := 1{90 —o >
0}. These quantities correspond to what we call the ‘true’ model.
We also consider a simplified model, where the decision maker as-
sumes 6 = 0. In this case, she estimates 6 and o2 by &; := 0 and
6% :=n"1Y 1 y? the objective function r by 7; :x+ (0—a)x,
and the corresponding optimal decision by X* := 0, the maximizer
of f] .
Now, consider the following three model-selection criteria:

(i) the quality of the estimated optimal decision X}, measured

by
Regret(X;) :=r(x*) — r(%}), ke{0,1};

(ii) the quality of the estimated reward function fj, measured
by its L, distance to the true reward function:

; 12
|| — 1| |2 = (/0 (Fe(x) — r(x))zdx> . kefo,1};

(iii) the quality of the estimated parameters ék, 6k2, measured by
the expected KL-divergence between the true and estimated
distribution of y at a randomly selected x:

Aoaa . [T 2 oy | 0x.02) )
l(L(Gk,Uk)._fo [N¢@|9x,a ) log 7{}5@'@’(&6’3) dydx, ke{0,1};

here ¢p(y|u, ¢2) is the pdf of a N(i, ¢2) distributed random
variable, evaluated at y.

Let
KRegret := arg krer{lgq} Regret(X}),
ky, = argkir{lgg} ||fk - r| |2,
kg := argkrel{lgg} KL(G,, 52),
be the best models according to these three criteria, with ties de-

cided in favor of model k = 0. The expected regret under these cri-
teria is given by

(9—05)1[”(90 50{) if0>a
0 ifo <«

E[Regret(kaegret)] = (24)

]E[Regret(kaZ )1

_ [(6 —a)(IP(AO < oz) +P§é0 >oand (Gp—0)2 > 92)) if0>a (25)
(@ 79)11»(90 ~aand (G- 6)? < 92> if0<a

and

E[ Regret(xkI KL )]

® —oz)(IP’(éo < a) +p(é0 > o and KL(dy. 62) > 1<L(é1,&12))) if0>a
B if0<a

(- 9)1}»(@0 ~ o and KL(dy. 62) < KL(&),. (712))
(26)
If 02/ 12 =62 and « =6 +0.75v/0, for some 6 >0, then

E[Regret(x,qz)] can be made arbitrary large by choosing 6 large,

)] remains zero.
ret

If Yt x=cn  6O=0?=cln. and «=06+0.75c,
for some O<cy<l<cy,, then, as n grows large,
]P’(I(L(éo, 63 < KL(4;, 612)) converges to one, IE[Regret(kaL)]
0.75¢,P(N(0, 1) > 0.75) ~ 0.17¢,,

while E[Regret(kaeg

converges to whereas
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E[Regret(xkkegret)]zo for all n. The difference in expected

regret can be arbitrarily large by choosing c, large.

Note that the model-selection criteria in this example depend
on the unknown parameters. They still need to be estimated from
data before they can be applied. Cross-validation and AIC are often
used to estimate k, and kii, and DBMS is an estimator of Kpegpet-
The purpose of this example is not to compare the performance
of pBms with AIC or CV, but to argue that, in a decision-making
context, it makes sense to design model-selection procedures that
estimate Kgegrer, i-6. the quality of decisions, instead of ki, kii, or
other criteria not connected to the decision problem at hand.
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