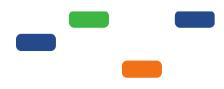
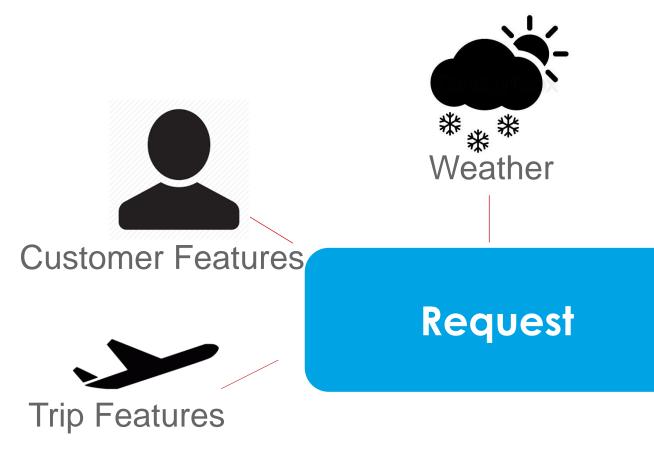


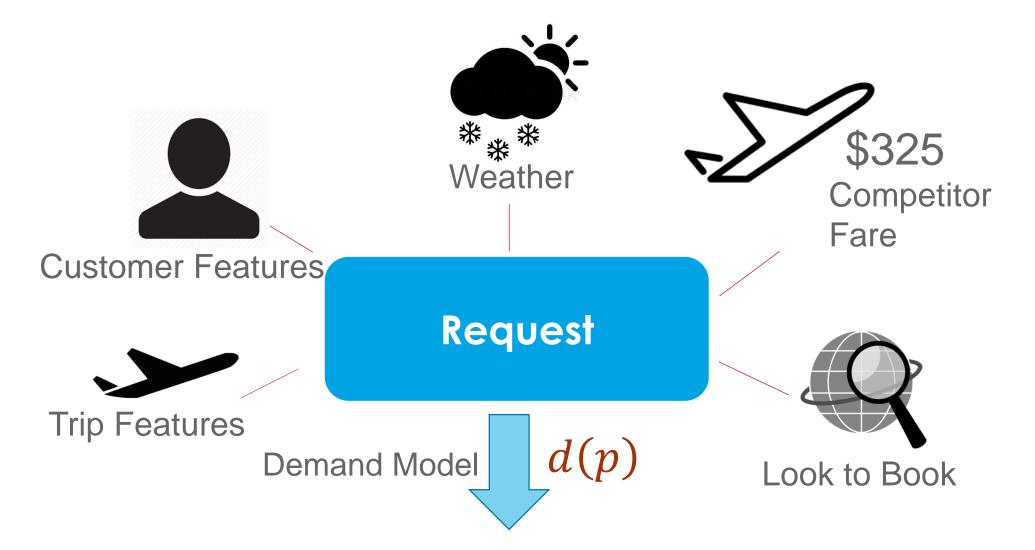
Ensemble methods in dynamic pricing

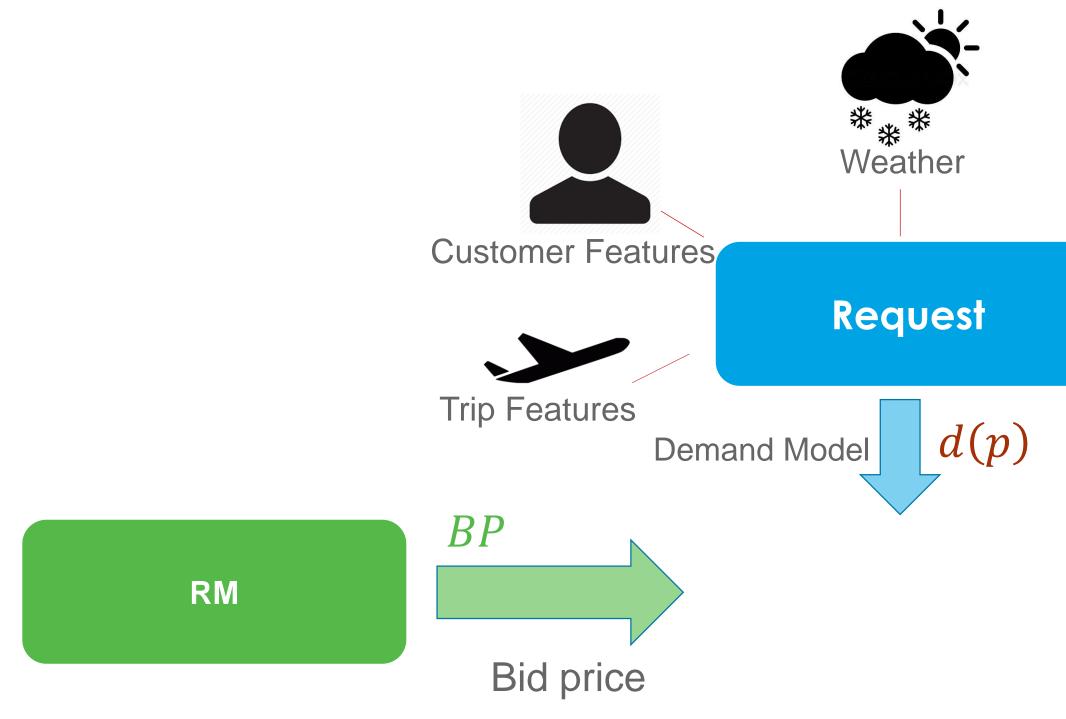


Dirk Sierag, Data Scientist Collaboration with Ravi Kumar

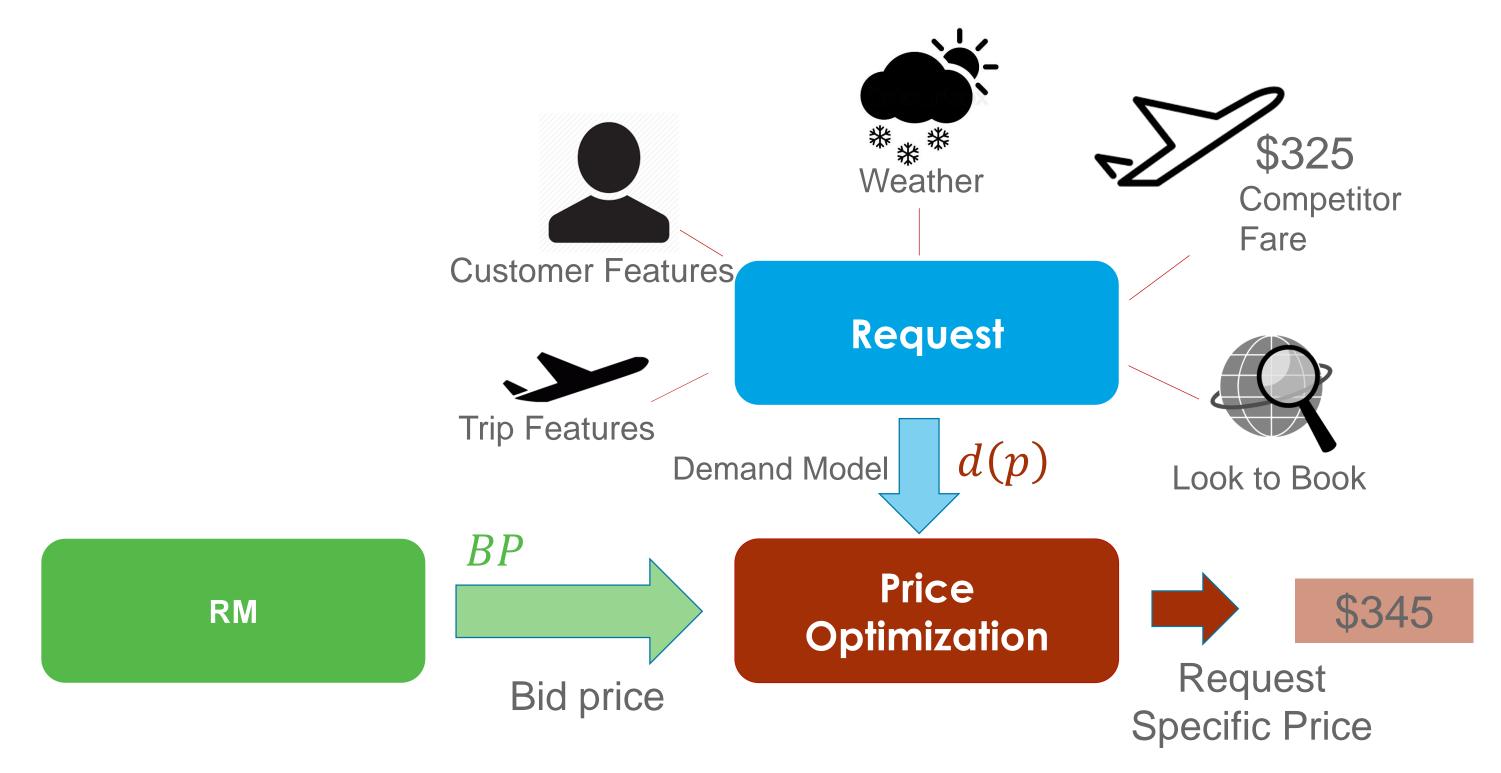


©2019 PROS, Inc. All rights reserved. Confidential and Proprietary





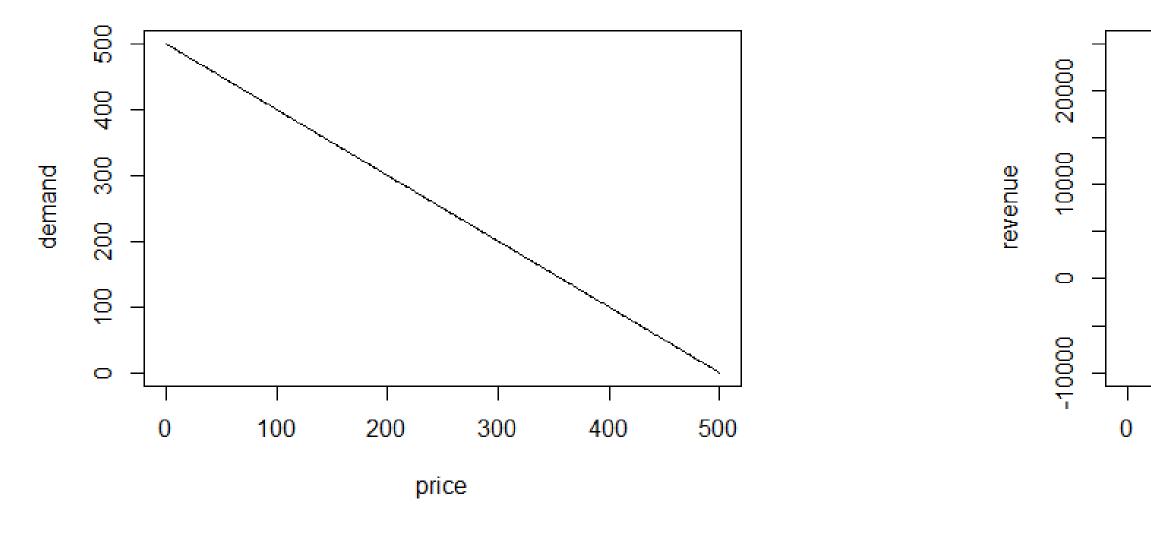
©2019 PROS, Inc. All rights reserved. Confidential and Proprietary

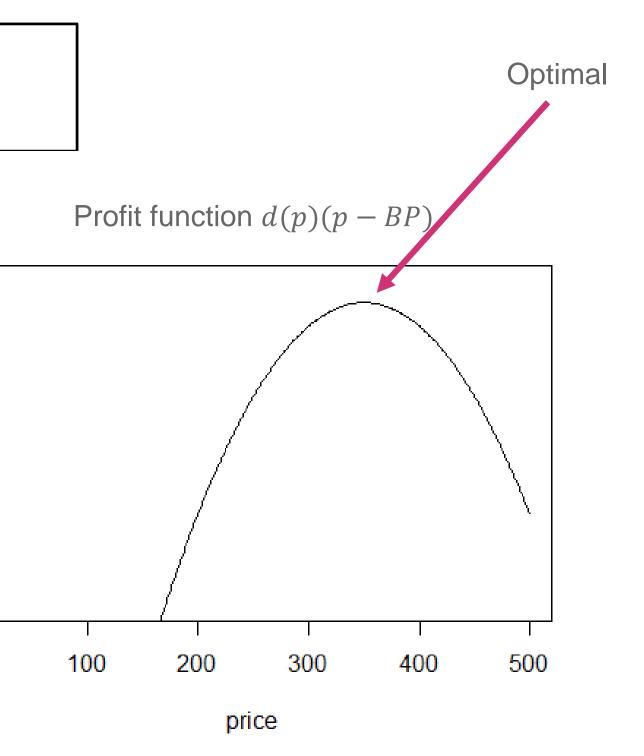


What is request specific pricing?

Optimal price: $p^* = argmax_p \ d(p) \cdot (p - BP)$

Demand function d(p)





Challenges in Practice

Data Sparsity

With so many features, data becomes very sparse

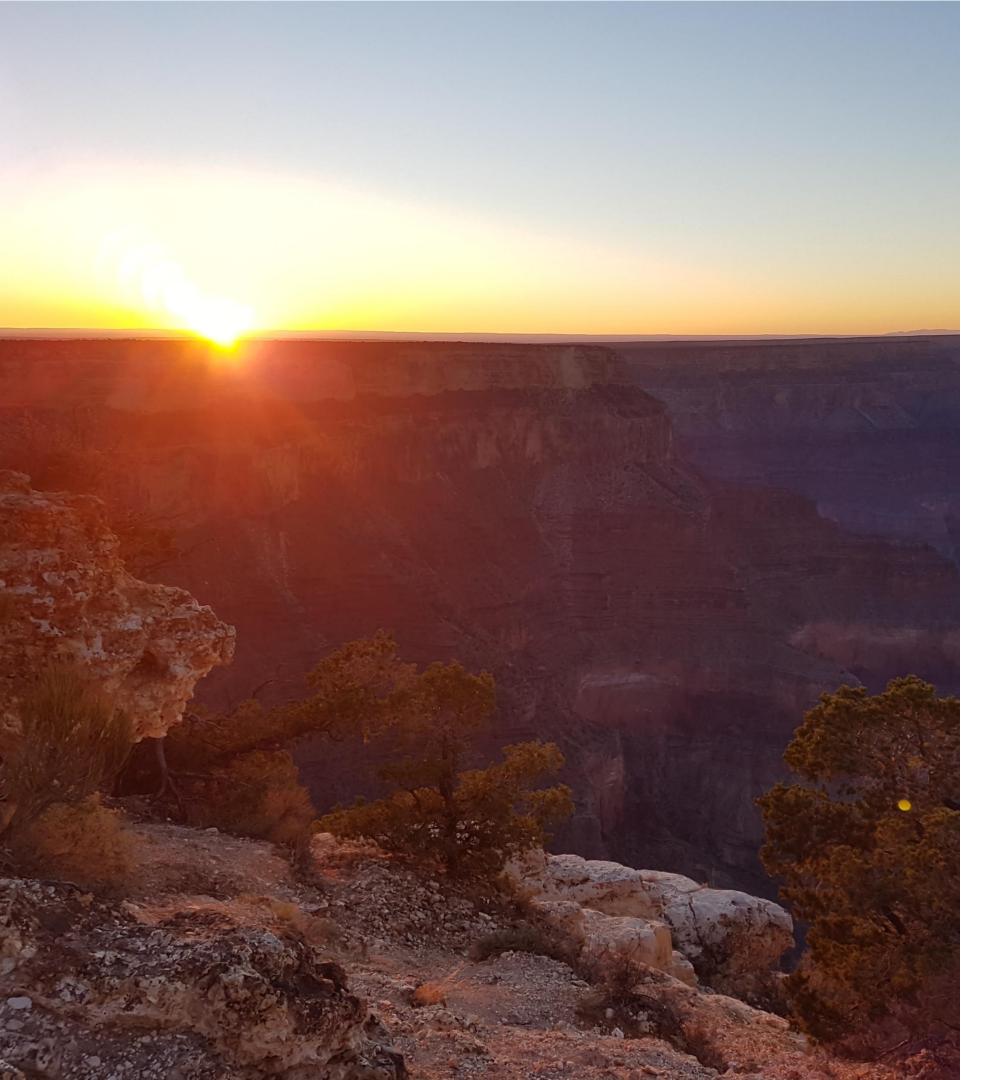
F71

Computation Time

Fitting complex models on big data is time-consuming – potentially intractable

Flat Slopes

Often flat slopes are observed – demand is overestimated and hence prices are overestimated



Ensemble model

Idea:

Upside:

Downsides:

- Instead of fitting
- one big model,
- fit several smaller models
- and ensemble the results
- (forecast/prices).
- **Overcome sparsity issues** Computation time
- Potential misspecified model

Example

- Data:
 - Demand D
 - Price *p*
 - Point of sale (POS): US & NL
 - Day of week (DOW): Mon, Tue, ..., Sun

Example

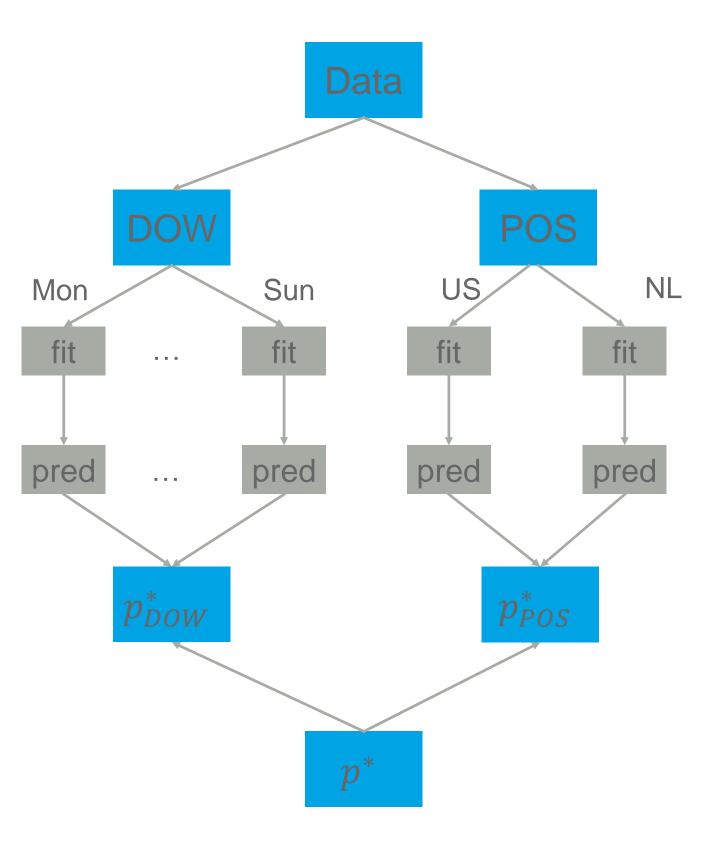
- 'One model' on all data:
 - $D = \beta_p p + \sum_{i \in \{NL, US\}} \beta_i \cdot \mathbf{1}_{POS=i} + \sum_{j \in \{Mon, \dots, Sun\}} \beta_j \cdot \mathbf{1}_{DOW=j} + \beta_0$
- Grand Canyon model on subset (e.g., POS=NL, or DOW=Tue):
 - $D = \beta_p^{POS=NL} p + \beta_0^{POS=NL} \rightarrow p_{POS=NL}^*$
 - $D = \beta_p^{DOW=Tue} p + \beta_0^{DOW=Tue} \rightarrow p_{DOW=Tue}^*$

•
$$p^* = f(p_{POS}^*, p_{DOW}^*)$$

• E.g., $p^* = \frac{1}{2} [p^*_{POS=NL} + p^*_{DOW=Tue}]$

Ensemble

Split data

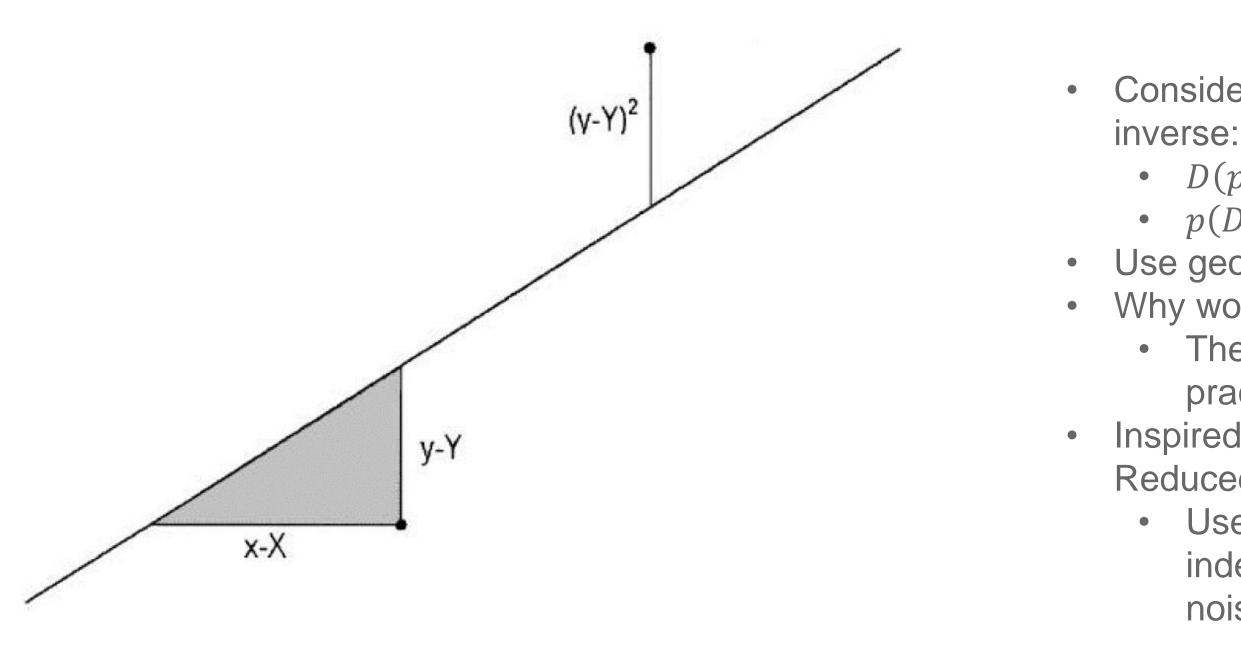


Example

- Any demand model can be used:
 - Linear demand: D = ap + b
 - Log-linear demand: $D = \exp(ap + b)$
 - (Multinomial) logit models: $P(X = 1) = \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}$
 - Gradient boosting regression

•

Linear demand – geometric mean of two estimates



- Consider the linear demand function and it's inverse:
 - D(p) = ap + b
 - p(D) = a'D + b'
- Use geometric mean of both predictions Why would the latter make sense?
 - There is uncertainty in both p and D (in practice)
- Inspired by Geometric Mean Regression or Reduced Major Axis Regression
 - Used when both dependent and
 - independent variables have
 - noise/measurement errors

- \bullet

 \bullet

- ullet

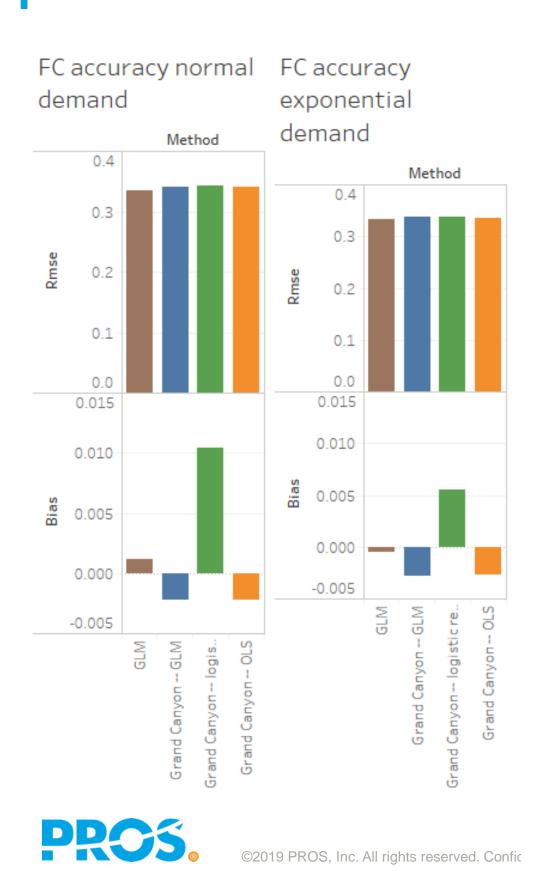
Data description

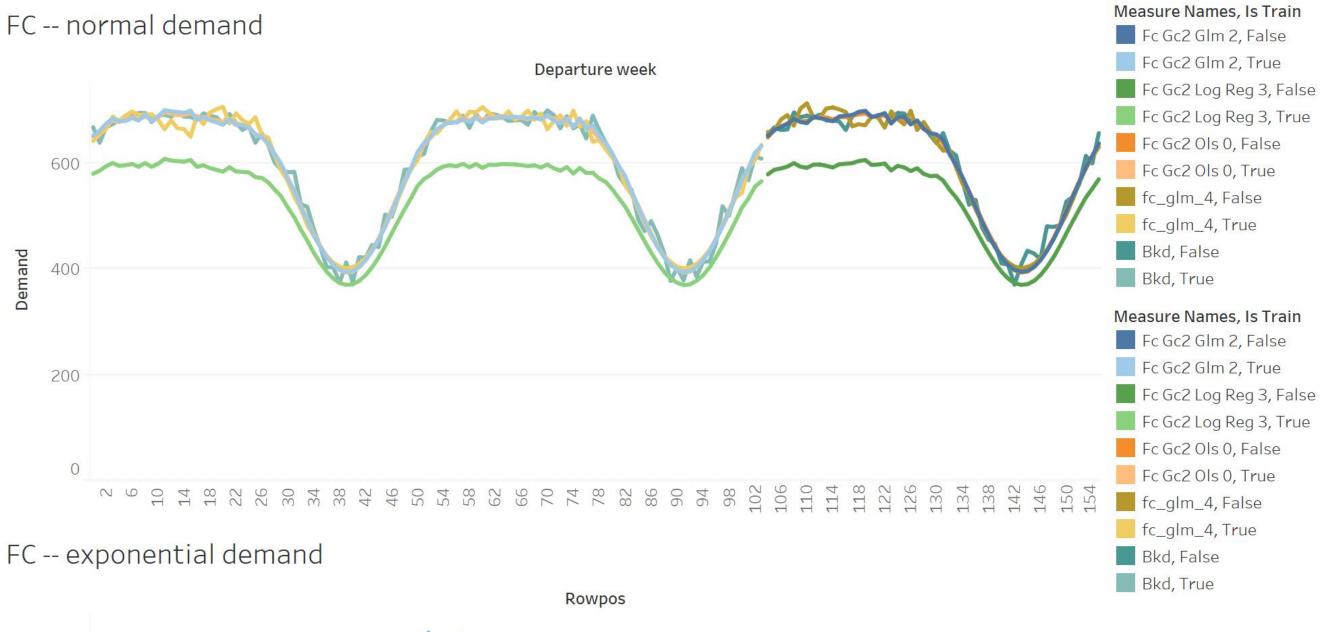
1 O&D Attributes: Point of sale Days booked before departure Day of week Seasonality 3 years of data – 2y train/1y test

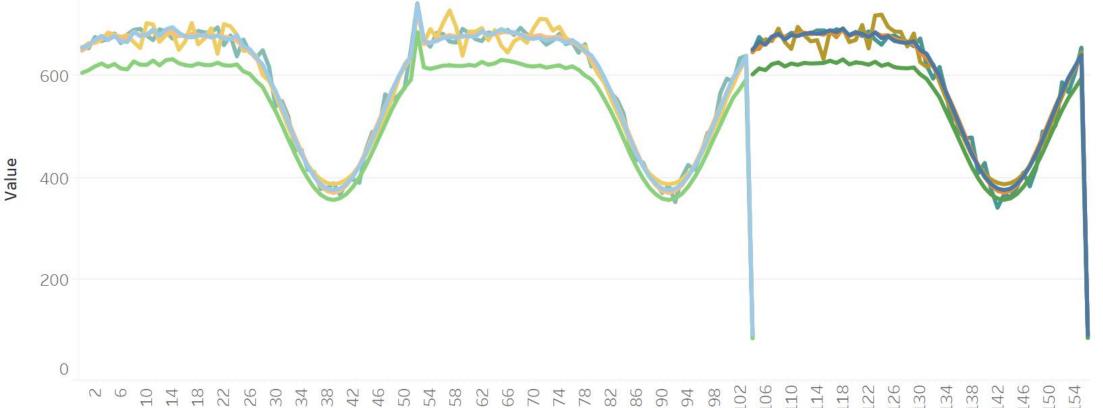
Solution methods: Ensemble – log-linear Ensemble – logit Ensemble – geometric mean (linear) Generalized linear model

FC -- normal demand

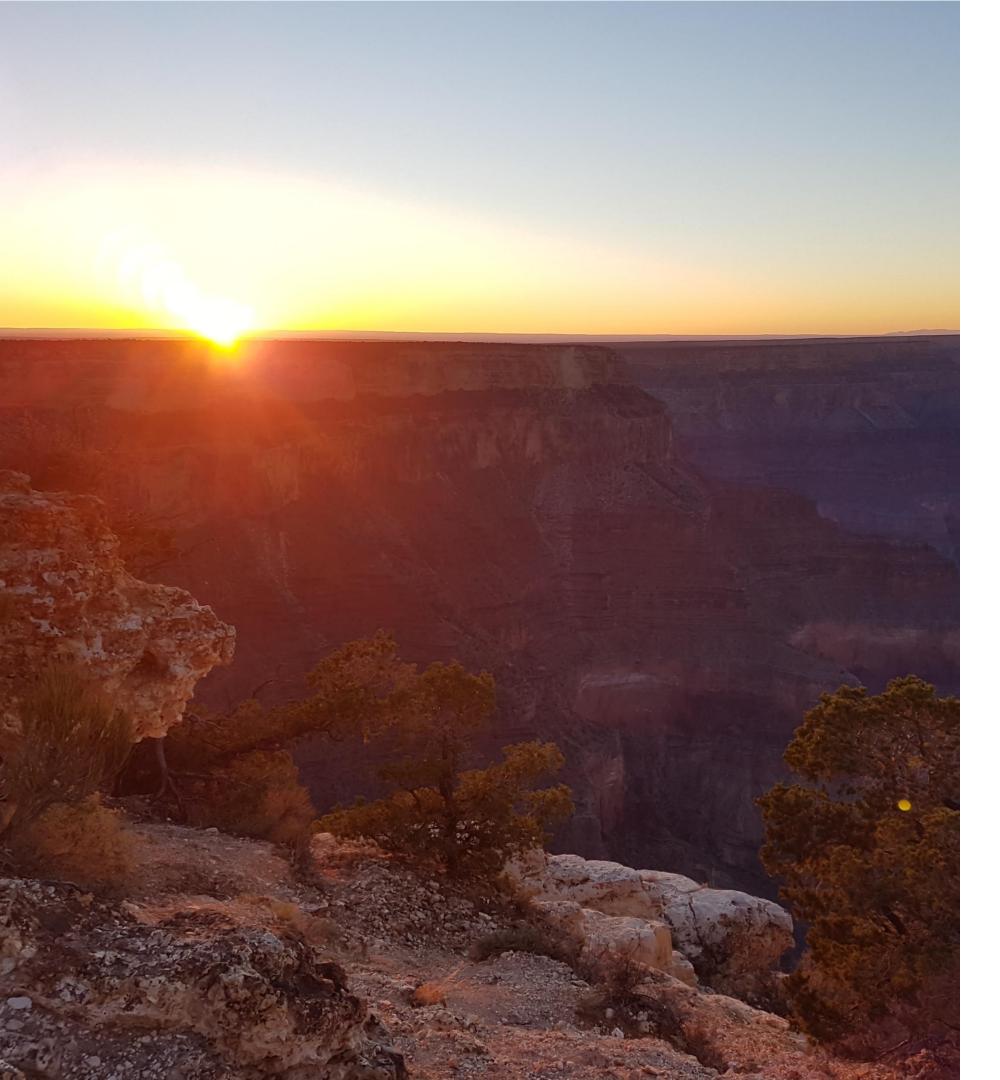
Forecasting







106 110 114 118 126 130 150 154



Forecasting

- forecasting Not clear which method (ols, glm) performs the best
- No clear indication which method to choose to do pricing

Observations:

Forecasts perform well all across the board

Conclusions:

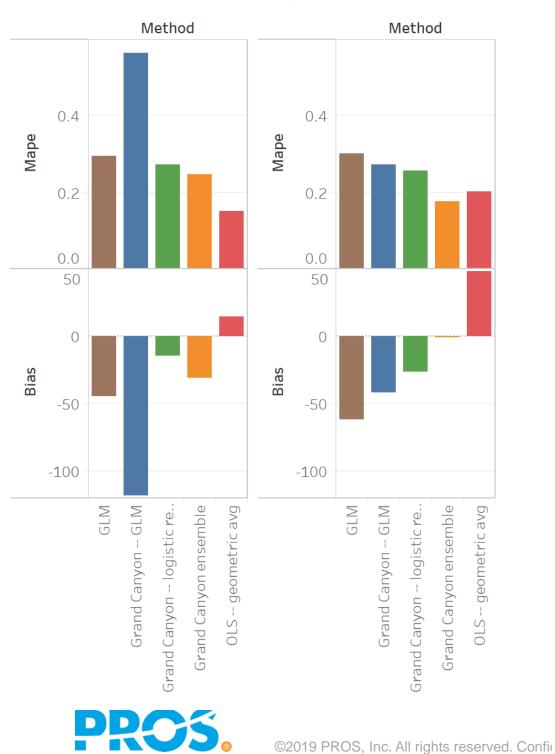
Ensemble model suitable for

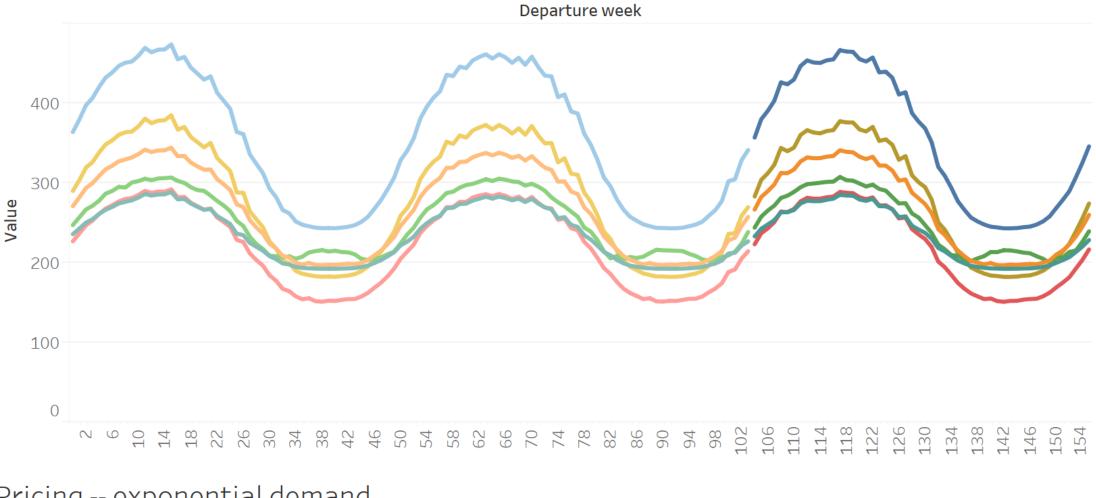
Pricing -- normal demand

Pricing

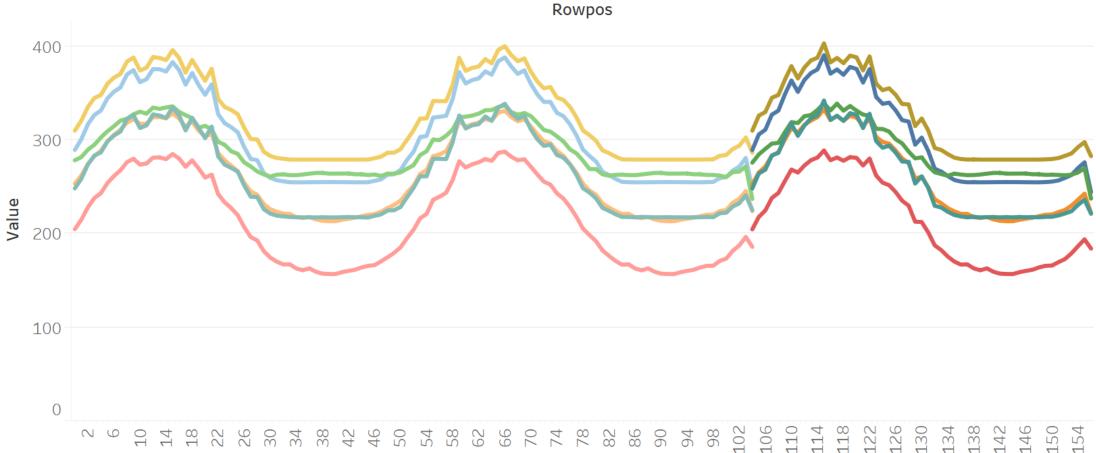
Pricing accuracy normal

Pricing accuracy exponential





Pricing -- exponential demand



Measure Names, Is Train

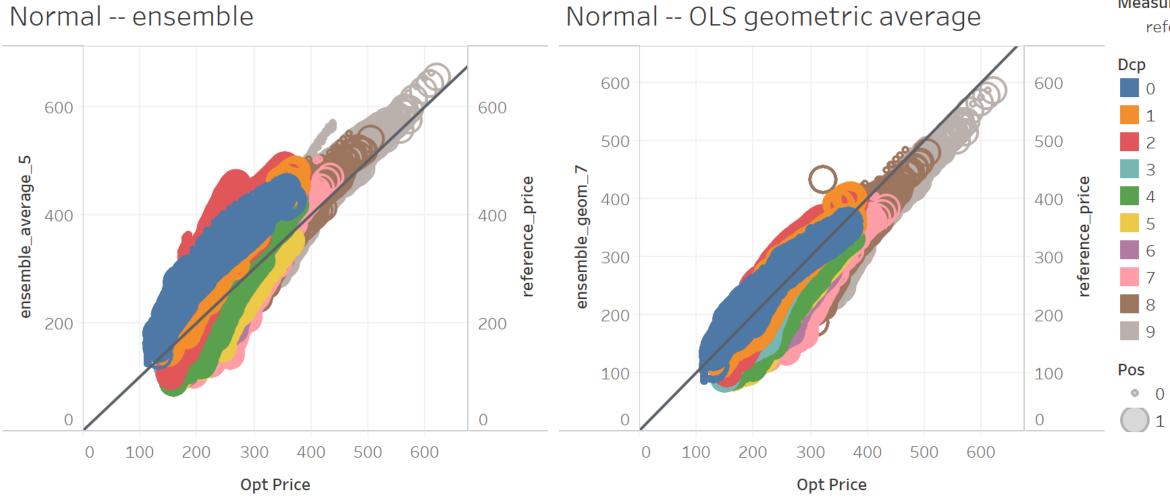
Avg. Opt Price, False Avg. Opt Price, True Avg. ensemble_avera.. Avg. ensemble_avera.. Avg. ensemble_geom.. Avg. ensemble_geom.. Avg. P Gc2 Log Reg 3, .. Avg. P Gc2 Log Reg 3, .. Avg. P Gc2 Glm 2, False Avg. P Gc2 Glm 2, True Avg. p_glm_4, False Avg. p_glm_4, True

Measure Names, Is Train

Avg. Opt Price, False Avg. Opt Price, True Avg. ensemble_avera.. Avg. ensemble_avera.. Avg. ensemble_geom.. Avg. ensemble_geom.. Avg. P Gc2 Log Reg 3, .. Avg. P Gc2 Log Reg 3, .. Avg. P Gc2 Glm 2, False Avg. P Gc2 Glm 2, True Avg. p_glm_4, False Avg. p_glm_4, True

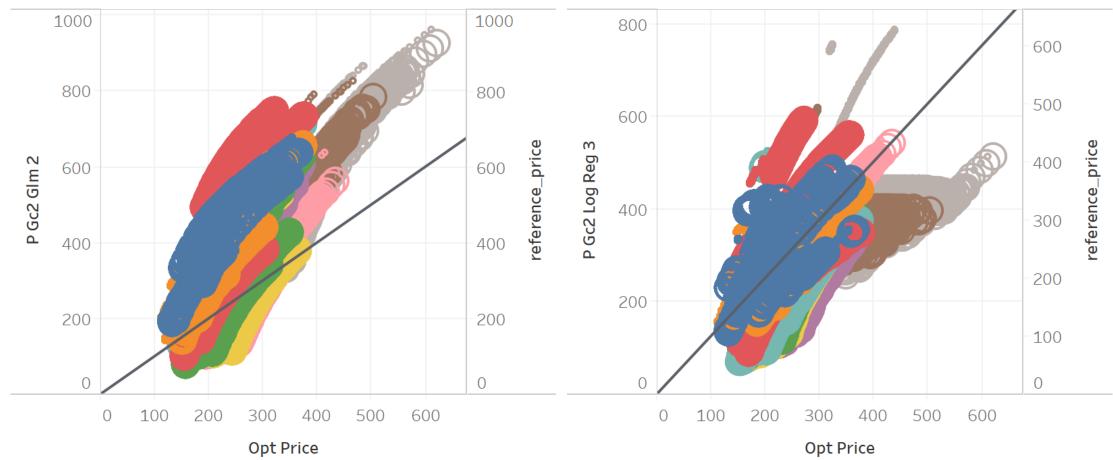
134 138 142 146 146 150 150

Pricing



Normal -- GLM

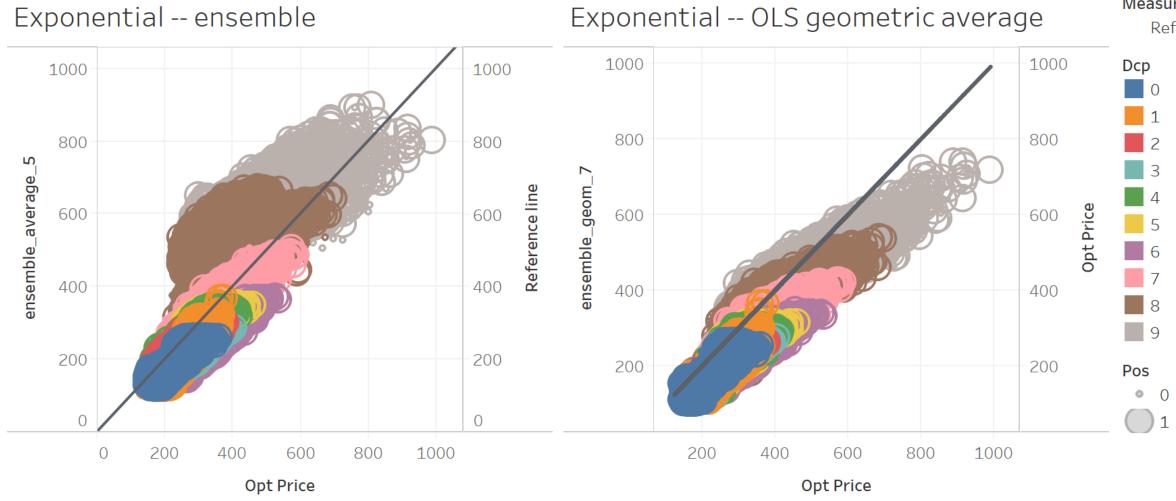
Normal -- logistic regression



©2019 PROS

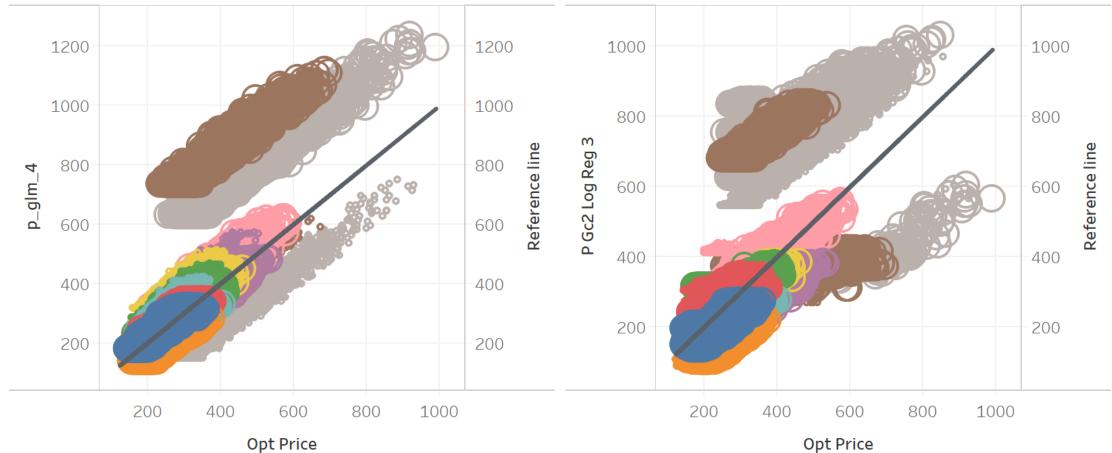
Measure Names

reference_price



Exponential -- GLM

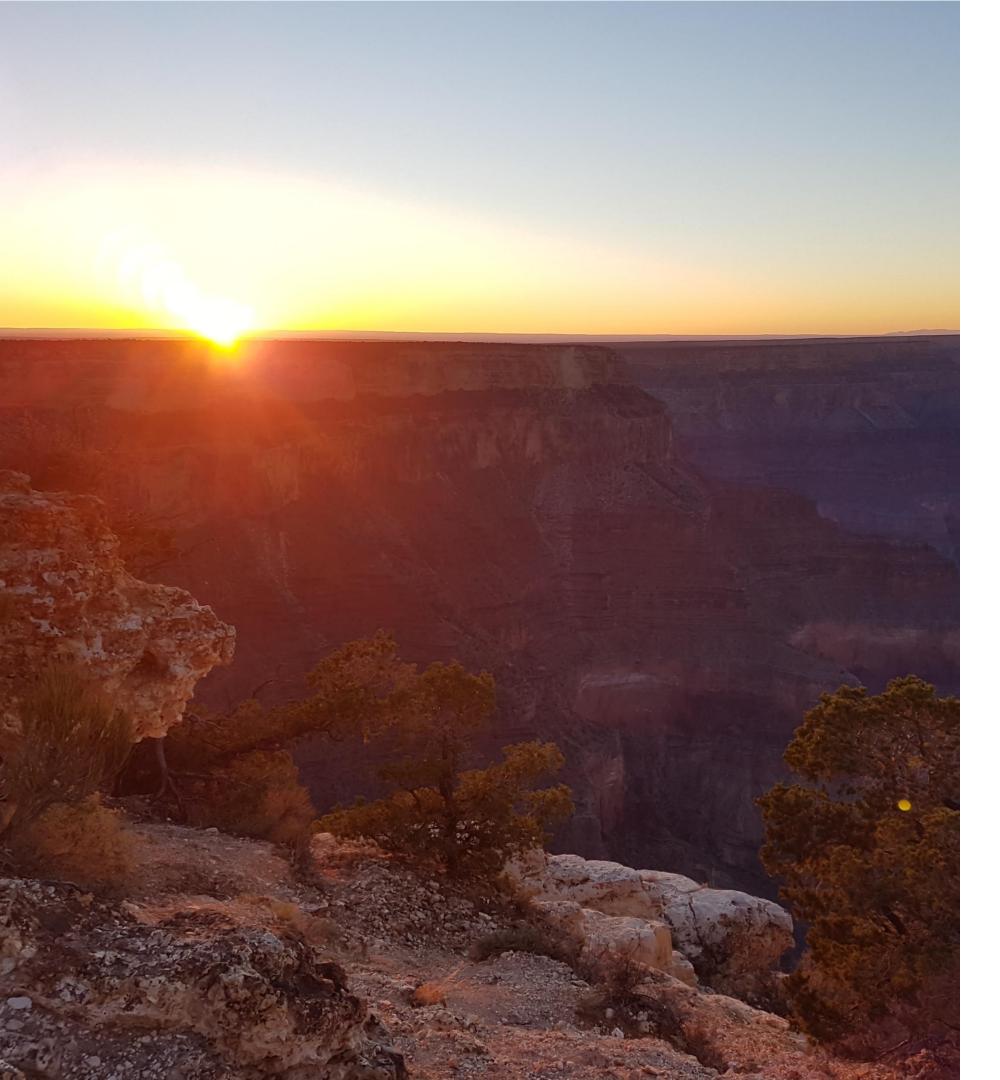
Exponential -- logistic regression



©2019 PROS

Exponential -- OLS geometric average

Reference line



Pricing

- Pricing performance varies a lot across the board Ensemble methods seem to do well
- across all accuracy measures
 - Conclusions/future research:
 - Good forecasts do not imply good prices Overpricing is an issue across the

Observations

board (future research)

I Dans A Course

PROS Headquarters | Houston, Texas | 3100 Main Street, Suite 900 | Houston, TX 77002, USA | +1-713-335-5105 +1-800-555-3548

