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CHAPTER 1

Introduction

In this dissertation revenue management (RM) and pricing methodologies are studied and
developed, motivated by challenges and opportunities faced by the hospitality industry.
RM is a discipline applying science and analytics in the relentless pursuit of increasing
long-term profitability through better business decisions. In a capitalistic world with
a highly competitive market it is essential for a company’s survival and growth to ap-
ply RM. Classic examples can be found in the aviation industry and the hotel industry,
which attempt to keep or increase their market share and revenue by dynamically deciding
when to offer which seats or rooms, for what price, at what time, and to which customers
according to information on amongst others demand forecasts, price sensitivity, and ca-
pacity constraints (Vinod, 2004; Clarke, 2004). However, RM can be applied to a wide
range of fields, including but not limited to the car rental industry (Geraghty & Johnson,
1997), theatres (Langeveld, 2006), golf courses (Kimes, 2000), restaurants (Guerriero et
alii, 2014), cruise ships (Maddag et alii, 2010), and TV and digital advertising (Gallego &
Phillips, 2004). All application areas have in common that a limited number of perishable
goods is sold, whether it is a hotel room, a seat on an aircraft, a rental car, a seat in
the theatre, a timeslot on a golf course, a cabin on a ship, or an impression on TV or a
website. RM models exploit this fact by dynamically adjusting the price and availability
of a product according to the demand and remaining capacity of the products.

RM is a complex task that involves knowledge on numerous factors that impact price
sensitivity and demand, i.e., factors that drive clients to purchase a company’s product.
For example, for a hotel the physical location, online rating and (recent) reviews, and
available facilities, like a spa or fitness centre, have a great impact on demand volume
and customers’ willingness to pay. A company can pinpoint factors and the effects on
demand by analysing available data (e.g., historical sales and online reviews) or by means
of surveys (e.g., to explore the positive effect on demand of building a fitness centre).
The company then implements these factors in an optimisation model with the objective
of maximising revenue under certain conditions. This line of thought is followed here:
the research contributions of this dissertation build directly on findings from practice, in
particular the hotel industry. The source of the findings range from our own thorough data
analysis, field studies reported in literature, and intense collaborations with practitioners.
Below three important issues are given that hotel managers face, and which chapters
address these issues in detail.

1. Hotel managers report that a large part of reservations are cancelled. This is sup-
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ported by the results from the hotel data analysis, presented in Chapter 2, which
shows that 21.7% of the reservations are cancelled between the years 2008 and 2012.
Chapters 3, 4 and 6 exploit this by incorporating cancellations into the revenue opti-
misation process. Numerical experiments show that this leads to a revenue increase
of up to 20%.

2. According to hotel managers, demand is very uncertain and varies a lot from day to
day, even considering seasonality effects. Our data analysis supports this claim, by
providing statistical evidence that demand data follows a nonhomogeneous Poisson
distribution, a random process indeed. To this extend, all of our models assume
that demand follows a (nonhomogeneous) Poisson distribution. Moreover, Chapters
4 and 7 provide solution methods to deal with uncertainty in demand by means
of robust optimisation techniques. The numerical studies in these chapters show
increased revenues of up to 3.25

3. Hotel managers claim that the wide available online reviews and ratings on booking
websites like Booking.com, Expedia, and Tripadvisor have a big impact on demand.
Studies in literature support this claim with empirical evidence (Pan & Zhang, 2011;
Park & Lee, 2009; Yoo & Gretzel, 2011). On the other hand, the price/quality
perception of the guest affects her motivation to write a positive or negative review
about her experience (Zhou et alii, 2014). Chapters 6 and 7 model both effects of
reviews explicitly in the optimisation process. It is shown that solely optimising
revenue, and not considering ratings or reviews, reduces the rating and quality
of reviews, which results in lower demand and lower revenues in the long run.
Numerical studies in these chapters show an increase in revenue of up to 11% and
5.2%, respectively, when the effects of reviews are accounted for.

Next, a concise history of RM is given, with focus on the relation between practice and
theory. This is then followed by an outline and contribution of this dissertation.

1.1 History of Revenue Management

The concepts and goals of RM date back to prehistoric times, when the first trade
economies emerged around the world. Merchants at that time faced similar decision
problems to optimise revenue as nowadays (Talluri & van Ryzin, 2004b). For instance,
merchants had to decide what price to offer, on what market to sell, and whether it would
be better to postpone offering the products until a future time, when one might get a
better price. People have been very innovative and creative to come up with pricing RM
strategies, improving economies to this very day. Hence, the nature of the questions that
RM attempts to answer is not new, but rather the methodology to answer those questions
is new: a data-driven, mathematical and technologically advanced approach.

The discipline of RM originated in the airline industry, in the 1970’s, when sophisticated
computer reservations systems provided detailed sales history data. Littlewood (1972)
described the case of British Overseas Airways Corporation (BOAC, currently known as
British Airways), who started offering a limited number of seats on flights at a discounted
price for clients who purchased at least 21 days in advance. Through mathematical
analysis BOAC was able to forecast how many seats it should reserve for the full fare
in a way that no seats would remain empty and that full fare products would not be
cannibalised, i.e., that full fare sales would not diminish.

The airline deregulation act of 1978 in the USA is often considered as the starting point
for RM (Talluri & van Ryzin, 2004b). Between 1938 and 1978 domestic interstate flights
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of the USA were considered public utilities, just like electricity, postal services, and other
forms of public transport, and routes, schedules, and prices were set by the federal Civil
Aeronautics Board (CAB). After the deregulation, airlines were able to set their own
routes, schedules, and prices. As a consequence, budget airlines emerged throughout
the USA. A famous example is People Express Airlines (PEOPLExpress), which was
founded in 1981 and offered flights at 50-70% lower prices than the establishes airlines
at that time. PEOPLExpress was a great success, it increased market share and profits
rapidly at the expense of established airlines, in particular American Airlines. To prevent
losing more market share, American started implementing a large-scale RM system called
Dynamic Inventory Allocation and Maintenance Optimizer (DINAMO). With DINAMO
American matched or undercut prices from PEOPLExpress by offering a limited number
of ultimate super-saver fares which were non-refundable and had to be bought at least
30 days in advance. This way American offered competitive prices that could not be
matched by PEOPLExpress, which caused American’s revenues and profits to increase
by 14.5% and 47.8%, respectively, and caused the abrupt bankruptcy of PEOPLExpress
(Cross, 1997).

A pioneering example of hotel RM, following the airline industry, is the case of Marriott
International, which camped with similar features as American did, such as perishable
capacity constraints, budget competition, and advance reservations. Marriott created a
demand forecasting system, taking into account the additional complexity of hotels caused
by length of stays (LOS’s), which helped increase revenues of the hotel chain by $150-200
million annually (Cross, 1997). Another prominent example and application area is found
in the car rental industry, where the North American company National Car Rental, faced
by liquidation in 1993, initiated a comprehensive RM program of analytical models to
manage capacity, pricing, and reservations. Not only did National Car Rental manage to
return to profitability, but it even managed to increase annual revenues by $56 million
(Geraghty & Johnson, 1997).

Parallel to the development of RM systems in practice the research area of RM was estab-
lished as a branch of operations research. Motivated by practical situations, mathematical
problems were formulated and solution methods were studied. The pioneering work of
Littlewood (1972) introduced a capacity control model for two fare-classes on a single
flight leg. The natural extension of this model is to include multiple fare-classes, which
can be solved exactly by using dynamic programming. However, these solution methods
developed after practice was already using heuristical approaches, such as the popular
Expected Marginal Seat Revenue (EMSR) solution methods by Belobaba (1987b,a, 1989),
that are still used in practice. Extensions to these basic models include buy up/buy down
effects and optimisation of network problems with multiple resources, e.g., optimisation
of origin-destination journeys consisting of multiple flights, and multiple night stays in
hotels; see McGill & van Ryzin (1999) for an overview.

One characteristic that is well studied in literature, but difficult to implement in practice,
is the problem of modelling purchasing behaviour of clients by means of choice models.
Earlier RM models assumed that clients were not comparing different products when
making a purchase; rather, these RM models assumed that demand for products is in-
dependent from the offer set, i.e., the set of products that is offered. The seminal work
by Talluri & van Ryzin (2004a) provides a detailed analysis of a single-leg RM model
that takes customer choice behaviour into account. Following their work, Gallego et alii
(2004) and Liu & van Ryzin (2008) provide analyses of choice-based network models,
along with heuristics to overcome the curse of dimensionality caused by the state space,
which becomes prohibitively large in practical examples. Despite the fact that literature
has shown the benefits and potential revenue improvements of choice models, practice has
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been reluctant to apply such sophisticated models. One reason is that the choice models
cannot simply be implemented as an add-on to old RM systems, because measuring choice
behaviour requires investing in a new system that keeps track of more records than only
sales data. InterContinental Hotel Groups (IHG) is a pioneer in implementing a choice-
based RM system, and with great success: by optimally determining room rates based
on occupancy, price elasticity, and competitor prices, IHG was able to increase revenues
annually by 2.7% (Koushik et alii, 2012).

Over the years RM systems have become an integral part of many companies in a va-
riety of industries. Many major companies have their own RM department, where new
strategies and RM tools are developed and implemented. Moreover, specialised RM firms,
such as PROS and IDeaS, have emerged, offering state-of-the-art RM tools for small and
medium enterprises (SME) as well as assisting major companies with their RM system.
Recent technological advancements sound the beginning of a new era in RM: a data-driven
approach, where vast amounts of data (‘big data’) on client behaviour and sales are col-
lected and analysed. Recent start-up companies, such as Uber and Airbnb, thrive on these
data-driven RM methodologies. By collecting a unique data set of individual customers
through their apps and websites, they can exploit unconstrained demand information to
segment customers and to set prices accurately for maximal revenue.

1.2 Contribution of this Dissertation

This dissertation is the combined work of four years of research, which resulted in six
journal papers, each represented here as a single chapter. Each chapter can be read
independently, including references to relevant literature, while links between different
chapters are marked where necessary. The following summarises the research contribution
and gives an outline of the dissertation.

Using five years of data collected from a small and independent hotel in The Netherlands,
the case study in Chapter 2 explores RM system data as a means to seek new insights into
occupancy forecasting. The study provides an insight into the random nature of group
cancellations, an important but neglected aspect in hotel RM modelling. The empirical
study also shows that in a local market context demand differs significantly per point
of time during the day, in addition to a seasonal monthly and weekly demand pattern.
Moreover, the study presents evidence that demand follows an nonhomogeneous Poisson
distribution, a crucial characteristic for forecasting modelling that is generally assumed
but not reported in the hotel forecasting literature. This implies that demand is more
uncertain for smaller than for larger hotels. By reporting the results of an in-depth case
study, Chapter 2 seeks to draw attention to the critical and often overlooked role of
exploratory data analysis in hotel RM forecasting.

In many application areas such as airlines and hotels a large number of bookings are typ-
ically cancelled. Explicitly taking into account cancellations creates an opportunity for
increasing revenue. Motivated by this, Chapter 3 proposes a RM model is that takes can-
cellations into account in addition to customer choice behaviour. Moreover, overbooking
limits are considered, as these are influenced by cancellations. The problem is modelled
as a Markov decision process and three dynamic programming formulations are proposed
to solve the problem, each appropriate in a different setting. The study proves that in
certain settings the problem can be solved exactly by using a tractable solution method.
For other settings, where the problem is intractable due to the curse of dimensionality,
tractable heuristics are proposed. Numerical results show that the heuristics perform al-
most as good as the exact solution. However, the model without cancellations can lead to
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a revenue loss of up to 20%. Also, a parameter estimation method is provided that is fast
and provides good parameter estimates. The combination of the model, the tractable and
well-performing solution methods, and the parameter estimation method ensures that the
model can efficiently be applied in practice.

A popular trend in RM captures the behaviour of customers that choose between different
available products. The provided solution methods assume that there is no uncertainty
in the parameters of the model. However, in practice the parameters may be uncertain,
e.g., because of estimation errors. A relatively recent field of optimisation that takes
into account uncertainty in the optimisation procedure is robust optimisation. Robust
optimisation methods provide solutions where the worst-case scenario is optimised, taking
into account uncertainty in parameters. Chapter 4 studies a robust optimisation approach
to single-leg choice-based RM based on Talluri & van Ryzin (2004a) and Sierag et alii
(2015). The problem is modelled as a Markov decision process and solved using dynamic
programming. This chapter uses φ-divergence uncertainty sets to model the probability
vectors of general choice-models. Novel robust optimisation techniques are applied to the
dynamic program, taking into account uncertainty in the parameters. An important yet
surprising insight from the numerical results is that the robust solution method performs
better for smaller inventory than for larger inventory. Moreover, the robust solution
method shows great performance when knowledge on cancellation behaviour is lacking:
on average the expected reward then improves by 2.5-3.25%.

Chapter 5 proposes and analyses a pricing-based RM model that allows flexible products
on a network, with a non-trivial extension to group reservations. Under stochastic demand
the problem can be solved using dynamic programming, though it suffers from the curse
of dimensionality. The solution under deterministic demand gives an upper bound on
the stochastic problem, and serves as a basis for two heuristics, which are asymptotically
optimal in capacity and demand. The numerical study, which is based on a problem
instance from practice, shows that the heuristics perform well, even under uncertainty in
demand. Moreover, neglecting flexible products can lead to substantial revenue loss.

Chapter 6 proposes a RM model that integrates reviews and ratings. The dependency
between reviews and revenue is two-fold: on the one hand reviews impact demand, and
on the other hand customers write reviews based on their price/quality perception. A
complicating factor in this model is that the effects of reviews are delayed. For instance, by
sacrificing revenue now in order to get better reviews, long-term revenue can be increased.
Because the full planning problem of finding an optimal strategy for the proposed model is
intractable, a novel solution methodology is proposed to solve the problem approximately
by restricting the space of possible solutions to equilibrium strategies. The study shows
that equilibrium strategies for the full problem can be found by viewing the full problem
as a series of multi-objective Markov decision processes subproblems, while aiming to
keep the balance between positive and negative reviews constant to a target review ratio.
Numerical studies show that taking reviews into account in this manner can lead to an
increase in revenue of up to 11% compared to the case where the sole objective is revenue.

Chapter 7 proposes a choice-based network RM model that integrates the effect of reviews.
Faced by the complexity of the model, two heuristics are proposed, one of which uses
robust optimisation techniques. Numerical results show a 3.5-5.2% improvement when
reviews are taken into account. Moreover, the impact of reviews is larger under low
demand intensity than under high demand intensity.
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CHAPTER 2

Exploratory Data Analysis in Revenue Management
Forecasting: a Case Study of a Small and Independent

Hotel in The Netherlands

In this chapter a detailed analysis of data from a small and independent Dutch hotel is
performed, stressing the importance of regularly analysing data in revenue management
(RM). The study gives insight in the random nature of cancellations of (group) reserva-
tions and the effect on demand and revenue. The study also shows evidence that demand
follows a nonhomogeneous Poisson distribution, an important characteristic that is often
assumed in demand forecasting models without any evidence. A surprising result that fol-
lows from the analysis is that demand from business and leisure clients differs significantly
per point of time during the day.

2.1 Introduction

Since the early 1990s hotel RM practice has evolved gradually (Ferguson & Smith, 2014)
setting off large investments in sophisticated RM systems (RMS). Whilst varying in
structure these RMS essentially calculate and update booking limits within a reserva-
tion system, extracting and processing information from various other systems (Phillips,
2005). One of these systems, lying at the heart of each RMS, is forecasting (Lemke et
alii, 2013). As Talluri & van Ryzin (2004a, p. 407) observe: ‘a RM system requires fore-
casts of quantities such as demand, price sensitivity, and cancellation probabilities, and
its performance depends critically on the quality of these forecasts.’ While there is am-
ple research on forecasting, a major weakness of work in hotel RM is its focus on the
model selection aspect of hotel forecasting, with notable exceptions such as Schwartz &
Hiemstra (1997), Kimes (1999), Schwartz & Cohen (2004b), Schwartz & Cohen (2004a),
Bendoly (2013), Koupriouchina et alii (2014), and Van der Rest et alii (2016). Forecasting
comprises multiple facets including (a) problem definition, (b) information gathering, (c)
preliminary (exploratory) data analysis, (d) choosing and fitting models, and (e) evaluat-
ing and adjusting the model (Makridakis et alii, 1998). In hotel RM all steps are critical
and overlooking any of these steps can lead to under performance of the RMS. Moreover,

This chapter is based on Sierag, van der Rest, Koole, van der Mei, & Zwart (2016).
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even after an initial round of model selection and evaluation, new data analysis will be
required: hotels operate in a changing environment affecting the nature of the data, and
thus adjustments to the model analysis may be required. Yet, most research focuses on
defining a forecasting problem, developing or selecting a forecasting model, and testing
the model. The crucial steps of information gathering and (preliminary) data analysis are
often overlooked.

Motivated by this, this chapter aims to draw attention to the importance of regular
data analysis by demonstrating how a real-life hotel can gain new forecasting insights by
exploring and analysing data from its RMS. To this purpose, key factors of hotel demand,
price sensitivity, and cancellations are identified, by analysing data from a small and
independent hotel in The Netherlands. In particular, group cancellation behaviour, the
effects of uncertainty in demand, and different dimensions of seasonality are studied. The
remainder of the chapter is organized as follows. First the background of the research
problem is explained in the remainder of this section. In section 2.2 the data set and
hotel case study are described. Sections 2.3, 2.4 and 2.5, respectively, provide the case
study findings, in particular insights into (1) different levels of seasonality; (2) group
cancellation behaviour; and (3) uncertainty in demand and cancellations. Finally, the
chapter discusses the findings, the limitations of the research and provides directions for
future research.

2.1.1 Background

Forecasting is an area in operations research which over the years has grown into a whole
discipline of its own with specialist research attention from a wide range of disciplines
and sectors (Fildes et alii, 2008). For example, forecasting has received continuous re-
search attention in tourism with work as early as Fritz et alii (1984), and with advanced
contributions such as Li, Song, & Witt (2006), Li, Wong, et alii (2006), and Song et alii
(2013). As Li et alii (2005) and Song & Li (2008) identified in two comprehensive literature
reviews, 451 studies on tourism demand modelling and forecasting were published during
the period 1960-2008. The hospitality literature has traditionally paid little attention to
forecasting in hotel RM with the exception of Law (1998), Weatherford et alii (2001),
Cranage (2003), Law (2004), Lim et alii (2009), Farouk El Gayar et alii (2011), Yang et
alii (2014), and Koupriouchina et alii (2014), and Koupriouchina et alii (2017). In the op-
erations research literature a stream of forecasting applications in hotels can be observed
with work from Rajopadhye et alii (2001), Baker et alii (2002), Brännäs et alii (2002),
Weatherford & Kimes (2003), Aghazadeh (2007), Chen & Kachani (2007), Yüksel (2007),
Bermúdez et alii (2009), Guadix et alii (2010), Haensel & Koole (2011a), and Zakhary et
alii (2011).

Hotel RMS traditionally assume that demand for each rate class is distinct and inde-
pendent of the alternative options hotel guests have when booking a room. To challenge
this common assumption and to incorporate other important buying behaviour aspects,
customer choice models have been proposed in the RM literature (see Chapter 3 and
Talluri & van Ryzin, 2004a; Meissner & Strauss, 2012; Liu & van Ryzin, 2008; Aydin et
alii, 2012; Erdelyi & Topaloglu, 2010). When customer choice behaviour is incorporated,
data analysis research will be especially important as in order to apply customer choice
modelling to hotel RM practice successfully the appropriate choice (and estimation) of
model parameters is crucial (e.g., van Ryzin, 2005; van Ryzin & Vulcano, 2013; Newman
et alii, 2014). Bodea et alii (2009, p. 356) criticize the literature as ‘the measurement of
revenue benefits associated with choice-based RM has been based primarily on simulated
data.’ They argue that there is a need to test these models on real data sets to see if
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the customer choice concept really works as: ‘choice-based systems are not simply an
incremental improvement or ‘add-on’ to existing product-based systems, but are funda-
mentally different. Consequently, successful implementation of these systems will require
a company to invest significant resources in developing new data collection procedures,
RM algorithms, and user support systems’ (Bodea et alii, 2009, p. 357).

Bodea et alii (2009) describe the laborious process of data collection and validation in
order to provide a data set that could be used to benchmark the choice-based models pro-
posed in the RM literature. They developed a data set based on five hotel properties and
discuss its potential uses including ‘proofing of concepts’ and ‘benchmarking’. Their study
shows how crucial data collection is especially as a precursor to demand and forecasting
model development. Studies focusing exclusively on data analysis, such as graphing data
(for visual inspection), computing statistics (for relationships), decomposition analysis
(for trends, unusual or extreme data points), however, are virtually non-existent. This
is an important omission as exploratory analysis is key to the selection of the class of
quantitative models (Makridakis et alii, 1998). Moreover, the academic literature on fore-
casting in hotel RM with an inclination for modelling makes many assumptions about
the properties and nature of data, but which often are not supported by preliminary
empirical research.

2.2 Case Description

Five years of data (2008-2012) was collected from a small and independent hotel. The
utilization of such data is of theoretical and practical importance as little is known about
RM in this type of hotel, which makes up the majority of all hotel properties in Europe
(Luciani, 1999; Holverson & Revaz, 2006). Moreover, small and independent hotels gen-
erally do not employ a revenue manager who interacts with the RMS (Lee-Ross & Johns,
1997). This is an important criterion as the data was thus not limited by endogenous
system effects.

The hotel is located in the countryside in The Netherlands and attracts business as well
as leisure clients. As Table 2.1 illustrates, the hotel has 34 rooms which are partitioned
into six room types each with a typical price.

Room type Abbreviation # Rooms Typical price
Standard STD 8 119
Garden view GV 8 127
Large garden view LGV 6 134
Old STO 6 103
Private garden PG 5 140
Bridal Suite BRD 1 140

Table 2.1: Overview of room types and prices.

All rooms have a maximal capacity of two persons. The hotel has other facilities such as
conference rooms and a restaurant. The restaurant not only serves hotel guests but also
locals and tourists from the area.

Collecting the data was a lengthy process. Interaction with the hotel owner, the property
system vendor, and two RM experts were needed to ensure data integrity. The data set
had the following structure. Each data entry was a reservation for one hotel room. As
a result, group bookings were recorded as separate reservations and further examination
was required to identify which reservations were part of group bookings. Within each
reservation several characteristics were recorded. First of all, the arrival date and the
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departure date of the booking was recorded, along with the check-in time and check-out
time once the guest had stayed in the hotel. Also, the day and time of the booking were
recorded. This characteristic proved to be essential for the data-analysis. If the reservation
was cancelled, the cancellation date was recorded. The room type for which the reservation
was made was present. The hotel regularly upgraded guests for free if a better room was
available, but this was not recorded. The price that was paid for the reservation (room
only) was recorded. The number of occupants of the room was also recorded, and it was
even specified how many adults and children the room was booked for. Finally, the travel
purpose (business or leisure), the name of the guest and if applicable the company name
were present. A sample of the data set is presented in Table 2.2.

Booking Arrival Departure Segment Cancel. Room Occupancy
Date Time Date Time Date Time Date Type Price adult child
2007- 03:13 2008- 14:00 2008- 11:00 Business 2008- PG 140 1 1
04-04 02-14 02-15 02-06

Table 2.2: Overview of data set properties.

The following statistics were computed per room type (STD, GV, LGV, STO, PG, BRD)
and for all data (TOTAL): (a) total number of reservations, (b) average occupancy, (c)
average number of reservations, (d) average price that was paid for a room for one night,
(e) percentage of nights that the hotel or room type was fully occupied, (f) percentage of
rooms that was sold to groups, (g) average number of days between the reservation and
the arrival day, (h) average length of stay, (i) percentage of guests that stayed more than
one night, (j) total revenue, and (k) the percentage of bookings that were cancelled.

Total March 2008
(a) Total # reservations 443
(b) Average occupation 1.38
(c) Average # reservations 14.29
(d) Average price e121.74
(e) % maximal occupancy 3.23%
(f) % groups 65.99%
(g) # days before arrival 46.03
(h) LOS 1.48
(i) % LOS > 1 28.91%
(j) Total Revenue e53,152
(k) % cancellations 29.67%

Table 2.3: Example of key statistics.

Table 2.3 provides an example of these statistics (TOTAL, one month). These five-year
statistics were determined for each month of the year, to capture average changes during
the year, and per year, to capture changes from year to year. The hotel suffered from
the recent economic crisis. Whereas the total number of reservations was 6,747 in 2008,
in 2012 this was reduced by 26.6% to 4, 952. Total revenue reduced from e840,858.57 to
e644,919.20.

2.3 Insight into Seasonality

An important aspect of demand is seasonality, i.e., a recurring pattern of demand across
the year, week, or even during the day. In this section seasonality is analysed on these
three different levels, with promising results.
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2.3.1 Annual Seasonality

Changes in demand were first explored at the annual level. To compensate for seasonality
within a week, the demand of different weekdays was aggregated in a week. Figures 2.1,
2.2, and 2.3 show the average annual demand pattern for all guests, for the leisure guests,
and for business guests respectively.
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Figure 2.1: Yearly Seasonality – total.
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Figure 2.2: Yearly seasonality – business.

As Figure 2.1 illustrates, from January to September total demand increased and from
September to January total demand decreased. Figure 2.2 shows that the demand from
business guests was quite stable during the whole year, except for a gap in July and
August. Figure 2.3 shows that the demand from leisure guests was low in winter, and
steadily rose until a peak in July and August, in line with the Dutch summer holiday
season. To examine whether leisure and business demand significantly differed a two-sided
Kolmogorov-Smirnov test was applied to the time series of 2008-2012. The null hypoth-
esis, stating that leisure and business demand were drawn from the same probability
distribution, was rejected (D = 0.2449, p < 0.001). The annual seasonality of leisure and
business thus differed significantly.
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Figure 2.3: Yearly seasonality – leisure.

2.3.2 Weekly Seasonality

The hotel manager claimed to observe demand similarities at the week level. This phe-
nomenon is not uncommon in hotel RM practice. Using seasonal-trend decomposition
analysis the presence of weekly seasonality was verified. Decompositions were calculated
with a frequency varying between 1 (no seasonality) and 366 (a whole year). Then the
corresponding mean squared errors (MSE) were compared. The results are presented in
Figure 2.4.
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Figure 2.4: Decomposition of weekly seasonality – total.

It can be observed that the MSEs for decompositions with frequency equal to a multiple
of seven are lower. This suggests that the observation of a weekly seasonality indeed is
valid. Note that the MSE for values lower than seven are also low, but since multiples of
these frequencies have high MSEs they are not true seasonality frequencies.

Figure 2.5 presents the average number of hotel guests per day of the week (DOW). To
explore behavioural differences between business and leisure guests a distinction was made
at the total, business and leisure level. A pattern was observed where leisure guests more
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Figure 2.5: Average number of guests per week – total, leisure, business.

frequently booked for Friday and Saturday, and business guests for Monday, Tuesday,
Wednesday and Thursday, with a low occupancy on Sunday. Another observation was
that the occupancy in the weekend was higher than on weekdays. This did not imply,
however, that the hotel served more leisure than business guests.

2.3.3 Daily Seasonality

A crucial observation was made about the booking behaviour at daily level. As Figures
2.6, 2.7, 2.8 and 2.9 illustrate, customer booking behaviour depended on both the weekday
and the time of the day on which an advanced booking was made.
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Figure 2.6: Hourly occupancy demand per weekday – total, leisure, business.

To examine whether the booking behaviour of business and leisure guests significantly dif-
fered a Mann-Whitney U-test was performed. Reservations that were made before 5pm on
weekdays were more likely to have a higher price (Mdn = 120.50, M = 132.97) than reser-
vations made in the weekend and on weekdays after 5pm (Mdn = 109.90, M = 120.01),
U = 57031222, z = −21.505, p < .000, r = −.13. A chi-squared test confirmed a significant
association between reservation moment and occupancy, χ2(5, N = 25704) = 2497.756,
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Figure 2.7: Hourly occupancy demand per weekend day – total, leisure, business.
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Figure 2.8: Hourly price per weekday – total, leisure, business.

p < .000. This seems to represent the fact that before 5pm on weekdays rooms were
4.12 times more likely (based on the odds ratio) to be occupied by one person; in the
weekend and on weekdays after 5pm it was more likely to be two persons or more. A
second chi-squared test confirmed a significant association between reservation moment
and segment (business/leisure), χ2(1, N = 25704) = 1948.420, p < .000. Before 5pm on
weekdays rooms were 3.49 times more likely (based on the odds ratio) to be occupied
by a business guest; in the weekend and on weekdays after 5pm it was more likely to
be a leisure guest. The findings thus indicated that business guests, who tended to make
purchases during working hours, were willing to pay a higher price than leisure travellers,
commonly with an occupancy of more than one person per room, who tended to make
purchases outside working hours.

Figures 2.10 and 2.11 present business and leisure demand on an hourly basis. Purchases
made in the weekend were dominated by leisure guests. Purchases made during the week
consisted of a mix of business and leisure.

Table 2.4 shows that more than one third of all reservations were made in the weekend or
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Figure 2.9: Hourly price per weekend day – total, leisure, business.
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Figure 2.10: Hourly demand per weekend day – total, leisure, business.

after 5pm. on weekdays. The average price of those reservations was lower (M = 120.01)
and the average number of guests per room was higher (M = 1.71) than the reserva-
tions that were made during weekdays before 5pm. (M = 132.97 and M = 1.36, respec-
tively). This suggests that the hotel can take advantage of the two discrete segments by
dynamically changing prices both in the weekends and during the day, instead of main-
taining the one-price policy per room regardless of day and time of the day, a practice
that is commonly observed in small and independent hotels.

The RM forecasting literature does not take into account that demand can vary at certain
hours of the day. Whereas it is complicated to develop tractable solution methods and
accurate parameter estimation methods that perform well on computation time, taking
a relevant model extension (based on exploratory data analysis) into account can have
substantial impact on revenue, as is reported in literature. For example, the seminal
model by Talluri & van Ryzin (2004a) increased revenue up to 12% compared to 1-2%
differences in other literature at the time, by incorporating customer choice-behaviour;
and in Chapter 3 it is shown that by incorporating cancellations into the Talluri & van
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Figure 2.11: Hourly demand per weekend day – total, leisure, business.

Volume Leisure Business Guests Price
Total 25704 47.22% 52.78% 1.46 e129.15
Weekend or from 5pm 7581 68.47% 31.53% 1.71 e120.01
Weekdays before 5pm 18123 38.33% 61.67% 1.36 e132.97

Table 2.4: Example of key statistics.

Ryzin (2004a) model, a substantial (additional) impact on revenue, up till 20%, could be
achieved. The following claim is, therefore, formulated:

Claim. There is room for optimization by bringing the RM strategy in line
with demand for a specific month and day, as well as the observed booking
behaviour at the point of time during the day.

2.4 Insight into Group Cancellation Behaviour

Hotels are vulnerable to demand and cancellation uncertainty (Chen et alii, 2011). This
can lead to sudden increases and decreases in pickup which is why hotel revenue managers
within the context of regular booking patterns tend to closely monitor the booking pace
at both total and segmented level. This section analyses uncertainty in demand and
cancellations.

2.4.1 Booking Pace

Figure 2.12 below shows the relationship between demand and time until arrival for a
standard room at total and weekday level. It was found that demand increased as the
time until arrival decreased. Moreover, the majority of guests tended to plan not too far
ahead. To test if demand increased exponentially as the time until arrival decreased, as the
visual inspection suggested, an ordinary least squares regression was performed on the log
of the mean number of bookings against the weeks before arrival. The results of the regres-
sion showed that the number of weeks before arrival significantly predicted mean number
of bookings, β = −.908, t(38) = 13.32, p < .001. The number of weeks before arrival also
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explained a significant proportion of variance in mean number of bookings, R2 = .824,
F (1, 38) = 177.42, p < .001. Moreover, as price behaviour was captured on the secondary
axis, it was observed that during the last three months of the booking horizon the average
price decreased as the day of arrival came closer. The hotel thus dropped prices as the
booking window shortened. To identify whether the increase in the number of bookings
was also affected by a drop in price, with respect to the three month booking window,
a multiple regression (with time and price as the predictors) was performed. The results
show that the number of days before arrival (β = −.724, t(88) = −10.94, p < .000) and
price (β = −.226, t(88) = −3.42, p < .001) both significantly predicted the mean number
of bookings. Days before arrival and price also explained a significant proportion of vari-
ance in the mean number of bookings, R2 = .804, F (2, 88) = 180.1, p < .000. Therefore,
in addition to the shortening booking window, the drop in price affected demand.

The booking pace was different per weekday, suggesting that forecasting and pricing
models should take this behaviour into account. Arrivals on Monday through Thursday
showed similar behaviour patterns as well as the arrivals on Friday and Saturday. The
arrivals on Sunday behaved differently. The curve for Monday through Thursday was more
flat compared to Friday and Saturday. This implied that these reservations were made
earlier in the booking horizon (M = 37.06). On the other hand, reservations with arrival
on Friday and Saturday tended to book closer to the day of arrival (M = 29.10). For
Sunday this was even closer (M = 27.90).

2.4.2 Cancellations

Over five years of data on average about 21.71% of all reservations were cancelled. The
number of cancellations varied per year and per month.

Year
Month

Total
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2008 42.4% 26.7% 29.7% 34.0% 26.0% 23.1% 8.6% 13.6% 19.8% 32.9% 32.5% 28.5% 26.9%
2009 14.6% 18.2% 30.8% 32.5% 16.1% 38.4% 17.5% 23.0% 34.6% 18.9% 27.0% 13.9% 25.3%
2010 32.6% 16.8% 17.3% 15.3% 16.4% 22.3% 15.2% 18.9% 30.8% 16.4% 19.1% 15.3% 19.9%
2011 24.6% 14.2% 18.7% 6.9% 18.9% 12.6% 5.3% 9.5% 20.7% 10.4% 11.0% 16.6% 14.0%
2012 20.9% 22.9% 9.6% 29.9% 19.2% 31.8% 7.8% 13.7% 19.9% 16.4% 18.5% 20.5% 20.0%
Total 27.3% 20.0% 22.4% 25.9% 19.7% 26.5% 11.3% 16.2% 25.3% 19.9% 22.4% 19.6% 21.7%

Table 2.5: Cancellations per year per month.

As Table 2.5 illustrates, a higher cancellation rate was observed in 2008 (26.94%) than
in 2011 (13.98%). Cancellation rates also varied per month. For example, in January the
cancellation rate varied from 14.61% in 2009 to 42.38% in 2008.

Cancellations
Days before arrival

0-2 3-9 20-29 30-84 85+
2008 9.52% 11.85% 15.86% 30.02% 50.61%
2009 11.48% 8.57% 16.31% 27.70% 55.92%
2010 4.73% 10.13% 16.42% 31.29% 40.92%
2011 4.26% 8.51% 18.40% 24.35% 15.96%
2012 5.15% 6.36% 19.51% 34.66% 37.94%
Total 7.01% 9.13% 17.21% 29.43% 44.51%

Table 2.6: Cancellations and the booking window.

Table 2.6 shows that overall, cancellation rates lowered when the booking window
shrank. For example, 44.51% of all reservations that were made at least 85 days be-
fore arrival were cancelled eventually. Up to two days this was 7.01%. These rates varied
per year. For example, 15.96% of the reservations were cancelled in 2011 whereas this
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Figure 2.12: Advanced bookings and price of standard room – total.

was 55.92% in 2009. For individual days this variation was even higher as only monthly
averages were considered. Also, it was observed that 55% of the hotel’s occupancy came
from group bookings. These bookings showed higher cancellation rates.

As Table 2.7 presents, on average 34.30% of the group bookings were cancelled, as
compared to 21.71% of all bookings and 6.12% for transient bookings. A chi-squared



Exploratory Data Analysis in Revenue Management Forecasting 19

Cancellations Number of bookings
Transient Group Total Transient Group Total

Business 8.26% 36.79% 30.78% 2857 10709 13566
Leisure 5.41% 26.72% 11.58% 8627 3511 12138
Total 6.12% 34.30% 21.71% 11484 14220 25704

Table 2.7: Cancellation behaviour per segment.

test confirmed a significant difference between group and transient, at the total,
χ2(1, N = 25704) = 2968.518, p < .000, leisure, χ2(1, N = 12138) = 1106.404, p < .000,
and business level, χ2(1, N = 13566) = 861.630, p < .000. Based on the odds ra-
tio, it was found that groups were 8.00 times more likely to be cancelled than tran-
sient. For leisure and business groups this was respectively 6.37 times and 6.46 times
more likely than transient. A similar pattern was observed for business versus leisure,
with significant differences at total, χ2(1, N = 25704) = 1390.407, p < .000, group,
χ2(1, N = 14220) = 119.104, p < .000, and transient level, χ2(1, N = 11484) = 30.275,
p < .000. Using the odds ratio, it was found that business guests were 3.40 times more
likely to cancel than leisure guests. Business groups were 1.60 times more likely to cancel
than leisure groups. Business transient were 1.57 times more likely to cancel than leisure
transient. Using Levene’s test to identify differences in normalized variation between the
segments (p > .05) it was found, with regard to group and transient cancellation be-
haviour, that group business represents a relatively large proportion of the uncertainty in
demand and cancellations.

Cancellations have received wide research attention in the hotel RM (e.g., Chen & Xie,
2013). The recent customer choice models in hotel RM forecasting literature, however,
do not take cancellation into account, with the exception of the work in Chapter 3. Also,
group cancellations (and lost/ turn-down information) are not included in customer choice
modelling. Group business, which – as one of four major areas – was identified ‘as hav-
ing the greatest growth potential in hotel RM’ (Milla & Shoemaker, 2008, p. 110), has
properties that make modelling very complex. In addition, ‘transaction data, especially
for the largest groups and smallest hotels, generally are sparse’ (Holverson & Revaz,
2006, p. 49). Based on the exploratory data analysis the following claim is, therefore,
formulated:

Claim. There is room for a model extension in the (e.g., customer-choice
based) forecasting literature by bringing the RM strategy in line with the
more variable and statistically uncertain nature of group cancellations.

2.5 Insight into Demand Uncertainty

The demand for hotel rooms varied a lot from day to day. To this extend the nature of
the uncertainty of demand is studied.

2.5.1 Probability Distribution Function

One of the most crucial assumptions in any RM model is the probability distribution
function that demand follows. As was found in the analysis, on average the closer to the
day of arrival, the more clients booked, but this finding did not reveal the nature of the
demand distribution.
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Revenue management literature generally assumes a (nonhomogeneous) Poisson distribu-
tion (e.g., McGill & van Ryzin, 1999; Bitran & Caldentey, 2003; Talluri & van Ryzin,
2004a). That is, demand per time period is modelled as a homogeneous Poisson pro-
cess. With the use of a likelihood ratio test as well as a chi-squared test, it was tested
whether the data was Poisson distributed. All time periods (for the booking of a stan-
dard room) had p-values smaller than 0.001 so that the null hypothesis that the data was
not Poisson distributed was rejected. Tests on the other six room types confirmed this
finding. The finding that demand followed a nonhomogeneous Poisson process was in line
with earlier work by Haensel & Koole (2011b) who found that airline data was Poisson
distributed. Assuming a Poisson distribution in forecasting modelling has the advantage
of containing the Markov (memory-less) property (i.e., future demand does not depend on
the guests who booked a room for the same arrival day in the past). This is in accordance
with reality, since it is reasonable to assume that hotel guests arrive independent from
each other.

2.5.2 Implication: Logical Inferences about Hotel Size

When demand follows a Poisson process different consequences can be inferred for smaller
and larger hotels. Suppose demand is Poisson distributed with parameter λ, i.e., the
expected number of guests who book a room. The standard deviation is then equal to

√
λ

such that the 95% confidence interval of the actual demand D is given by:

D ∈ [λ− 2
√
λ, λ+ 2

√
λ]. (2.1)

The square root in formula 2.1 implies that the coefficient of variation decreases as in-
creases, such that for smaller hotels the coefficient of variation in demand is higher than
for large hotels.

Figure 2.13: Different consequences for smaller and larger hotels when demand follows a
Poisson distribution.

Figure 2.13 illustrates this size-implication inference for the case hotel (with 34 rooms)
compared to a ten times larger hotel (with 340 rooms). For illustrative purposes, market
demand is assumed at 297 rooms from with each hotel gets its fair market share (27
respectively 270 rooms). Then, in 95% of the cases the larger hotel would have a demand
between 237 and 302 rooms while the small case hotel would have a demand between 16
and 37 in 95% of the cases. In the worst case, for the small hotel this leads to 38% less
demand than the average case, while in the worst case for the large hotel this leads to
12% less demand than the average case. The finding that demand is Poisson distributed
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thus implies that a small hotel is more vulnerable to demand uncertainty than a large
hotel.

As (simple) forecasting and pricing models only consider average behaviour, they provide
an optimal strategy on average. However, when demand is volatile, as was found in
this study, forecasts will be inaccurate, the errors being worse for smaller than larger
hotels. To reduce forecasting error, forecasting and pricing models can take uncertainty
into account, for example by considering the distribution of demand or by applying robust
optimization techniques which take into account worst-case scenarios. This case study
indicates that these methods are especially preferable for small hotels because demand
variation is higher. Therefore, the following claim is formulated:

Claim. A nonhomogeneous Poisson process is a good approximate model for
hotel demand. As a consequence, demand is more uncertain for smaller than
for larger hotels.

2.6 Discussion

This empirical study emphasizes the importance of preliminary and exploratory data
analysis in hotel RM forecasting. Preliminary data analysis is key to the selection of
the class of forecasting models, whereas exploratory data analysis is essential to eval-
uate whether a chosen model still is appropriate to capture changes that occur in the
environment. As a whole, data analysis allows to determine whether a RM strategy is
still optimal and to explore new opportunities for revenue optimization. In this context,
this study found three overlooked or ill-researched aspects of data analysis in hotel RM
forecasting, each with different theoretical implications for demand modelling, forecasting
and revenue optimization.

First of all, it provides empirical evidence on a nonhomogeneous Poisson nature of the
probability distribution function that demand follows. There is little evidence of this
crucial and commonly assumed demand characteristic in the hotel forecasting literature,
especially for small and independent hotels. This implies that especially for small ho-
tels forecasting methods should be developed that take into account the uncertainty that
comes with the Poisson distribution, for example by using robust optimization meth-
ods. Secondly, the study presents evidence on the random nature of group cancellations,
an important but ill-researched segment in hotel RM. Optimization methods should take
these cancellations into account. It is, however, unclear how such model would look like
and therefore more research is needed. Thirdly, our results show that in a local market
context business and leisure booking behaviour significantly differ per point of time dur-
ing the day. As the study shows, forecasting models that take this behaviour into account
can create a revenue increase. A further study that models this behaviour could reveal
the extent of this potential.

As a whole the study finds support for the work of Koupriouchina et alii (2014) who argue
that research in forecasting should take place at a more granular level. It supports three
claims that answer to Bodea et alii (2009) who call for more work in forecasting based on
real-world data. In this context, as hotel RM forecasting can be perceived as ‘a big data
problem’, the study also supports Xiang et alii (2015, p. 120) who observe that ‘big data
analytics approach in hospitality is yet to be well developed and established’, and who
reveal the potential of big data analytics to generate new insights.
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The study is, however, not without limitations. One concern relates to the data which
was collected from a single hotel. While forecasting research tends to rely on simulated
data, and in this respect this exploratory study is a positive exception, its contribution
is case-based. In order to generalize the results and findings of this paper, similar studies
with more hotels have to be performed. However, collecting data from a similar hotel
is time consuming, since small and independent hotels generally collect and save data
poorly and incompletely. Another limitation refers to the small and independent nature
of the hotel and the specific local environment it operates in. The size and business mix
in this study is specific to the context of the hotel. A comparative study, where hotels
are grouped according to their location and client mix, could identify characteristics that
can be generalized or are specific to certain hotels. Such study is quite involved, since it
requires the cooperation of a lot of hotels and the collection and cleansing of their data. A
final limitation is that the study did not include competitive data. The hotel industry is
a highly competitive market, where hotels try to attract customer segments by means of
positioning and offering a certain quality at a fair price. An important result of such study
would be the effect of competitive prices on demand. However, again, the data collection
process is quite involved. One would not only would need sales data of all involved hotels,
but the whole pricing history, to identify price sensitivity when clients consider multiple
hotels before making a purchase.

There are various implications for practice. Data analysis provides important insights in
the booking and cancellation behaviour of hotel guests. When analysing at the segment
level, data analysis can provide insights that are essential to maintain an optimal RM
strategy and to explore new revenue opportunities. Data analysis also aids the process of
evaluating the RM model as it tells how forecasting performs with respect to changes in
demand. In this way, data analysis is vital for any hotel that seeks to stay competitive
in a changing environment. In the case of the small and independent hotel cancellation
was found to be much more severe than the hotel anticipated. Moreover, a daily booking
pattern was identified. A rationale was thus provided for adjusting the RM strategy. Data
analysis is however a laborious process (see also Bodea et alii, 2009). Especially for small
and independent hotels, such investment in time and analytical skills is often perceived
as not worthwhile.

The study suggests three directions for future research. First of all, the findings indicate
that there is room for an extension to the customer choice modelling literature in forecast-
ing. An existing attempt of such extension is given in Chapter 3, where it is shown that
taking into account cancellation can impact revenue up till 20%. It would be interesting
to examine whether their analysis holds for group bookings as well, and also whether
their model can be extended to include differences in demand per point of time during
the day. Secondly, the issue of variation in demand uncertainty as a result of differences
in hotel size, and its implications for forecasting, can be further investigated. If demand
and cancellations have a high variance, then conventional RM models are not appropri-
ate. Empirical work could establish whether this variance indeed is higher for small hotels
than for large hotels, as this exploratory study suggests. Finally, through systematic ap-
plication of big data analytics techniques new sources of data could be analysed to learn
which customer behaviour (such as day patterns) could be incorporated in forecasting
modelling to further improve hotel RM performance.



CHAPTER 3

Revenue Management under Customer Choice
Behaviour with Cancellations and Overbooking

Motivated by the data analysis in Chapter 2, this chapter proposes a revenue manage-
ment (RM) model that takes into account cancellations and overbooking, in addition to
customer choice behaviour. The study shows that the model can be solved exactly when
cancellations rates are assumed to be linear and equal. For general cancellation rates
the problem is intractable, and therefore effective heuristics are developed. Moreover, an
efficient parameter estimation method is developed that provides good estimates. The
numerics show that taking cancellations into account can lead to an increase in revenue
of up to 20%.

3.1 Introduction

RM applications have in common that customers choose a product among different prod-
ucts. For example, a customer who is looking for a hotel room may compare rooms of
different hotels before making a decision. The seminal paper by Talluri & van Ryzin
(2004a) incorporates customer choice behaviour in RM models. Their idea laid the foun-
dation for a new theory in RM: customer choice models. Since then the theory of customer
choice models has been enriched with among others better solution methods (Strauss &
Talluri, 2012; Meissner & Strauss, 2012), network models to take into account multiple
night stays or multiple flight legs (Liu & van Ryzin, 2008), and outstanding methods
to estimate the parameters of the model (Newman et alii, 2014). To the best of the au-
thors’ knowledge, however, an extension to a model including cancellations has not been
made. Modelling cancellations by taking into account customer choice behaviour has been
studied by Iliescu et alii (2008), but the cancellation process is not integrated with the
decision process. Examples of studies on models that include cancellations but do not
take into account customer choice behaviour are Lautenbacher et alii (1999), Aydin et
alii (2012), and Bertsimas & Popescu (2003). Lautenbacher et alii (1999) provide an anal-
ysis of an RM model with cancellations and overbooking, but customer choice behaviour
is not considered. Moreover, a satisfactory solution method for their intractable problem
is not provided. Recently, Aydin et alii (2012) proposed an RM model with cancellations,

This chapter is based on Sierag, Koole, van der Mei, van der Rest, & Zwart (2015).
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but they also do not take customer choice behaviour into account. Erdelyi & Topaloglu
(2010) and, more recently, Kunnumkal et alii (2012) provide customer choice models that
take into account overbooking but no cancellations.

The main contribution of this chapter is the inclusion of cancellations and overbooking
in an RM model that also takes customer choice behaviour into account. Two other
key contributions of this study are well-performing tractable solution methods and an
accurate parameter estimation method with low computation time. The combination of
these three contributions makes the customer choice cancellation model very suitable for
practitioners.

Taking cancellations into account in the decision making process has a big impact on
revenue. Numerical results (see Section 3.5) show that policies that do not take cancel-
lations into account can lead to a substantial revenue loss of 20%. So far the customer
choice models in existing literature do not take into account cancellations. However, in
practice it is common that for example seats on an aircraft are cancelled, hotel rooms
are cancelled, theatre tickets are cancelled, reservations for rental cars are cancelled, and
reservations for spots on a golf course are cancelled. Therefore, we stress that effective RM
systems should take cancellation into account in the decision making process. Moreover,
overbooking makes more sense when taking cancellations into account.

The problem is modelled as a continuous-time Markov decision process and solved using
dynamic programming. Some instances of the problem are too large to solve exactly
because of the curse of dimensionality. To overcome this problem, three tractable methods
are proposed, each appropriate under a different assumption. First it is shown that if
the cancellation rates are equal and linear with respect to the number of reservations
the problem can be reduced to a one-dimensional problem and thus it can be solved
exactly. Second, an efficient heuristic is proposed which is appropriate in the case that
the cancellation rates are linear with respect to the number of reservations, but not
equal. Third, a heuristic is proposed that can be applied to general cancellation rates,
under the only assumption that cancellations occur independent from each other. Also, a
heuristic is provided which can be applied if it is not assumed that all the resources are
identical. This occurs for example if the hotel has multiple room types or a theatre has
multiple seat classes. Numerical results show that the heuristics perform well.

To apply this model in practice it is essential to estimate the parameters of the model
accurately. The estimation of parameters of customer choice models can be challenging. A
common attempt is to use variations of the expectation maximisation algorithm. The basic
version of Talluri & van Ryzin (2004a), but also more sophisticated methods (e.g., van
Ryzin & Vulcano, 2013) have the drawback of long computation time and bad parameter
estimates. Recently Newman et alii (2014) proposed a different parameter estimation
method that shows great potential. The parameter estimation method that is proposed
for the customer choice cancellation model is based on this model. The parameters of
the continuous-time Markov chain are estimated, in contrast to most literature (e.g.,
van Ryzin & Vulcano, 2013), which estimate the parameters of the discretised Markov
chain. Our estimation method has the advantage that it has low computation time and
it gives good estimates. The combination of the three effective solution methods and the
efficient estimation method ensures that the customer choice cancellation model is well
applicable in practice.

The remainder of this chapter is organised as follows. First the customer choice cancella-
tion model is described in Section 3.2. In Section 3.3 solution methods are described: a
dynamic programming formulation, which solves the problem exactly but is intractable;
two heuristics, which are appropriate in different settings; and a heuristic to solve the
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problem for a hotel with different room types. Then Section 3.4 describes methods to
estimate the parameters of the model. Numerical results of the model are presented in
Section 3.5. Finally, in Section 3.6 and 3.7 we make some concluding remarks and propose
topics for further research.

3.2 Model Description

In this section the customer choice cancellation model is introduced. It is an extension
of the customer choice base model by Talluri & van Ryzin (2004a), which does not con-
sider cancellations. First the model with no assumptions on the cancellation behaviour is
provided. Second a first reformulation is provided based on the assumption that cancel-
lations only depend on the current number of reservations. Third, a reformulation based
on the additional assumption that cancellation rates are linear is provided. Finally, a
reformulation based on the additional assumption that all cancellation rates are equal is
provided. Section 3.3 provides effective solution methods for the models.

Consider a hotel with C ∈ N identical rooms. The rooms are sold for customer check-in
at a fixed future time unit such that revenue is maximised. The customer check-in is in
T time units. A common time unit is days, but some hotels sell rooms for a few hours to
accommodate for short stays (e.g., at airport hotels, see Hopman, 2013). Overbooking is
allowed up to Cmax rooms. A rate or fare product j is a room in combination with a certain
price rj , also called the reward for product j, and certain conditions (e.g., cancellation
conditions). Typical conditions in a hotel environment are refundable/non-refundable
rooms, where a refundable room can be cancelled free of charge and a non-refundable
not; or breakfast could be included or excluded from the fare product. Let N be the set
of all fare products. Assume that there is a finite amount n of fare products, such that
w.l.o.g. N = {1, . . . , n}. Let cj(t) be the costs if product j gets cancelled in time period
t. Note that cj(t) depends on the cancellation conditions.

Assume that cancellations only depend on the current number of reservations. This model
can also be used with time of booking dependent cancellations by including more fare
products. This problem is modelled as a finite-horizon continuous time Markov decision
process over T time units. Define the state space by

X :=

x ∈ Nn
∣∣∣∣∣∣x ≥ 0,

∑
j∈N

xj ≤ Cmax

 .

Each entry xj of x ∈ X corresponds to the pickup (number of reservations) for product
j.

There is a penalty q(x) involved if at the arrival day the state is x and there are more
reservations than capacity, i.e., ∑

j∈N
xj > C.

Customers arrive according to a Poisson process with parameter λ. Continuously in time
we decide which subset S ⊂ N of products to offer. Set S is called an offer set. If set S is
offered, the probability that an arriving customer buys product j equals Pj(S). Further-
more, the probability that an arriving customer buys nothing under offer set S equals
P0(S). Finally, for all products j the cancellations of reservations for product j are expo-
nentially distributed with parameter γj(x). In accordance with Markov decision process
literature a feasible solution π to our problem is called a policy. A policy π that optimises
total revenue is called an optimal policy. See Figure 3.1 for a visualisation of this model.
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λ
S

Control

...

Product j
Pj(S)

...
P0(S)

γj(x)

Figure 3.1: Visualisation of the customer choice cancellation model. The arrival process
is Poisson distributed with parameter λ. There is control over the offer set S. Under this
offer set an arriving customer buys product j ∈ S with probability Pj(S). With probability
P0(S) the customer buys nothing. Finally, cancellations of product j follow an exponential
distribution with parameter γj(x).

Discretisation

To solve the customer choice cancellation model, consider the discretised Markov decision
process. Divide time into T time periods, where the length of the intervals is such that
the probability that more than one event occurs is very small. Therefore, assume that
only one event occurs per time period, where an event is either an arrival, a cancellation,
or neither arrival nor cancellation. Denote λ as the probability that a customer arrives
in a time period; and γj(x) as the probability that product j is cancelled in state x. The
probability that no purchase occurs in a time period equals the sum of the probability
that neither an arrival and nor a cancellation occurs, and the probability that an arrival
occurs but the arriving customer makes no purchase. This is equal to1− λ−

∑
j∈N

γj(x)

+ λP0(S) = 1− λ
∑
j∈S

Pj(S)−
∑
j∈N

γj(x).

In each time period we decide which set S to offer. Note that time has to be scaled such
that

λ+ max
x∈X

∑
j∈N

γj(x)

 ≤ 1,

otherwise the probabilities are not well defined. This is possible as X is finite.

Remark. It is possible to incorporate no-shows and walk-ins into this
model. Lautenbacher et alii (1999) do this by incorporating it in the penalty
q(x). However, it is also possible to incorporate the walk-in probability in the
arrival probability and the no-show probability in the cancellation probability
in the last time step(s). We choose the latter method.
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Reformulation under Assumptions on Cancellation Rates

It is reasonable to assume that cancellations occur independent of each other. Assumption
3.1 below states that the probability that product j is cancelled only depends on the cur-
rent number of reservations xj for product j. The assumption is equivalent to Assumption
1 in Lautenbacher et alii (1999).

Assumption 3.1. Independence of Cancellations

γj(x) = γj(xj) for all x ∈ X, for some function γj : N→ R+.

To emphasize the fact that we work under the independence of cancellations assumption,
write γj(xj) instead of γj(x). Note that x is a vector and xj is a scalar.

Assumption 3.2 below is even stronger than Assumption 3.1.

Assumption 3.2. Linear Cancellation Rates

1. γj(xj) = γjxj , for γj ∈ R+, for all j ∈ N ,

2. q(x1) = q(x2) for all x1, x2 ∈ X with
∑
j∈N x

1
j =

∑
j∈N x

2
j .

The second part of Assumption 3.2 states that the penalty for overbooking only depends
on the total number of products that are sold and is independent from the types of
products that are sold. This assumption is realistic because we are dealing with identical
rooms, so relocation to a similar hotel induces the same costs. This is also a very convenient
step if we only want to keep track of the total number of reservations instead of the number
of reservations per fare product. For x ∈ X, let y denote the total number of reservations,
i.e.,

y =
∑
j∈N

xj .

Then under the linear cancellation rates assumption, write q(y) = q(x) for all x with∑
j∈N xj = y.

Assumption 3.3 below states that the cancellation probability is independent from the
product j, but it still depends on the number of reservations of product j.

Assumption 3.3. Linear and Equal Cancellation Rates

1. γj(x) = γxj , for γ ∈ R and for all j ∈ N ,

2. q(x) = q(y) with y =
∑
j∈N xj .

Under the linear and equal cancellation rates assumption the state space of the problem
is significantly reduced, as is shown in Theorem 3.1 in Section 3.3 below. However, this
assumption is not realistic. Different fare products are likely to have different cancellation
probabilities. For example, a refundable room is more likely to get cancelled than a non-
refundable room.
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Illustrative Example

An illustration of the model can be found in Example 3.1 below. This example is used
throughout this chapter.

Example 3.1. 1

Consider a hotel with C ∈ N rooms which offers three fare products. The
reward for these products is given by

r = (r1, r2, r3) = (160, 100, 90).

Both fare products 2 and 3 need to be purchased at least 21 days ahead. Fur-
thermore, the cancellation conditions are as follows: if a product of type j is
cancelled, the customer receives a refund of

cj =


r1 if j = 1,
1
2r2 if j = 2,

0 if j = 3.

In other words, product 1 is refundable, product 2 only refunds half the price,
and product 3 is non-refundable. Assume that overbooking is allowed but
is bounded by 20% of the capacity, such that Cmax = bC 6

5c. If we have∑
j∈N xj − C > 0 overbookings, then

∑
j∈N xj − C reservations are chosen

at random and relocated to another hotel. The costs of relocating a customer
is 170. Hence, the penalty q(x) for overbooking at the arrival day in state x
equals

q(x) =

170

( ∑
j∈N

xj − C

)
if
∑
j∈N xj − C > 0,

0 otherwise.

S P1(S) P2(S) P3(S) P0(S)
∅ 0 0 0 1
{1} 0.3 0 0 0.7
{2} 0 0.4 0 0.6
{3} 0 0 0.5 0.5
{1, 2} 0.1 0.6 0 0.3
{1, 3} 0.3 0 0.5 0.2
{2, 3} 0 0.4 0.5 0.1
{1, 2, 3} 0.1 0.4 0.5 0

Table 3.1: Purchase probabilities under different offer sets.

The hotel wants to sell the rooms in a period of T days. The purchase probabil-
ities Pj(S) are given in Table 3.1. Assume that the purchase probabilities are
the same for all time periods. The probability that a reservation for product
j is cancelled is

γj(x) = γjxj ,

with γj ∈ [0, 1] for all j.

1This example is based on Example 1 from Talluri & van Ryzin (2004a). The rewards are scaled to be
representative values for hotels. Moreover, cancellation conditions were added, cancellation probabilities,
and an overbooking policy.
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3.3 Solution Methods

This section provides solution methods for the models derived in Section 3.2. First, an
exact solution method is provided based on dynamic programming for the model with
no restrictions on cancellation behaviour. Unfortunately, this problem faces the curse of
dimensionality. To overcome this, heuristics for each model are provided. In particular a
tractable solution method is provided that solves the model under the linear and equal
cancellations assumption 3.3 exactly. Finally, a heuristic is provided that is applicable to
a hotel with multiple room types.

3.3.1 General Solution Method: No Assumptions on Cancellation Behaviour

Let Vt(x) be the maximal expected revenue from time t to the arrival day. To solve this
problem, consider the following Bellman equation:

Vt(x) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj + Vt−1(x+ ej)

)
if t > 0,

+
∑
j∈N

γj(x)
(
− cj(t) + Vt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γj(x)

)
Vt−1(x)

}
q(x) if t = 0,

(3.1)

for all x ∈ X with where ej ∈ Rn is the j-th unit vector. With dynamic programming
find an optimal strategy can be found. Unfortunately, this solution methods bears the
burden of the curse of dimensionality. The size of the state space X is O(Cn), so it
increases exponentially if the number of fare products increases. For a small number of
fare products the exact solution can be computed, like in Example 3.1. Obviously, in
practice the number of fare products is larger than in our small example. Hence, this
problem can not be solved for all practical purposes. To overcome this problem several
options are proposed. First it is shown in Theorem 3.1 that under certain conditions
the problem can be solved exactly. Second, several heuristics are proposed in case the
conditions of Theorem 3.1 are not satisfied. It will turn out that each heuristic has its
own advantages and disadvantages and is appropriate in a different setting.

Remark. In contrast to the dynamic programming formulation of Lauten-
bacher et alii (1999) the structure of an optimal policy is not clear before-
hand. The main difference between the models is that customer choice be-
haviour is also considered. However, if the purchase probabilities follow an
independent model, as described by Talluri & van Ryzin (2004a), we do get
similar admission control policies. More precisely, if the purchase probabilities
are given by

Pj(S) =

{
pj if j ∈ S,
0 otherwise,

then an optimal policy of Equation (3.1) will have the form

accept a fare product j request if and only if

rj + Vt−1(x+ ej) > Vt−1(x).
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In the remainder of this chapter we focus on dependent demand models.

Reformulation

The customer choice cancellation model can be reformulated such that the costs are incor-
porated in the rewards. We do this by adding the expected costs caused by cancellations
to the value function. This reasoning is borrowed from Lautenbacher et alii (1999), who
use it in their RM model which does not take customer choice behaviour into account. We
show in Theorem 3.1 below that under certain conditions the customer choice cancellation
model is equivalent to a one-dimensional problem.

Let H(x, t) be the expected costs from cancellations from the reservations in state
(x, t). The costs are fixed because we do not have control over the reservations. Then
H(x, t) is given by the recursive formula

H(x, t) =


∑
j∈N

γj(x)
(
cj(t) +H(x− ej , t− 1)

)
+

(
1−

∑
j∈N

γj(x)

)
H(x, t− 1) if t > 0,

0 if t = 0.

Define the value function Ṽt(x) by

Ṽt(x) := Vt(x) +H(x, t). (3.2)

The value function Ṽt(x) can be interpreted as the maximal expected revenue to go from
reservations without costs from current cancellations. These costs are unavoidable and
have no influence on future profits. Note that cancellations still occur, but it will turn out
that this reformulation alters the cancellation term in a preferable way.

Define

∆Hj(x, t) := H(x, t− 1)−H(x+ ej , t− 1),

for all x ∈ X and for all t > 0. Then we can rewrite Ṽt(x) as follows:

Ṽt(x) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj + ∆Hj(x, t) + Ṽt−1(x+ ej)

)
if t > 0

+
∑
j∈N

γj(x)
(
Ṽt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γj(x)

)
Ṽt−1(x)

}
,

q(x) if t = 0.

(3.3)

Equation (3.3) is equivalent to Equation (3.1) in the sense that it leads to the same
policy. This follows from Equation (3.2) and the fact that the policy to go has no influence
on H(x, t).

Efficient sets

The customer choice base model has some elegant properties described in Talluri & van
Ryzin (2004a) which reduce the action space and therefore the computation time. Unfor-
tunately, these properties do not hold in the customer choice cancellation model. To show
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this, we introduce the concept of efficient sets in Definition 3.1 below (which is the same
as Definition 1 in Talluri & van Ryzin, 2004a). We will show later on that some heuristics
do satisfy some of the elegant properties described in Talluri & van Ryzin (2004a).

Definition 3.1. For each S ⊂ N , x ∈ X and t ∈ {0, . . . , T} define Q(S) and
R(S) by

Q(S) :=
∑
j∈S

Pj(S), R(S, x, t) :=
∑
j∈S

Pj(S)(rj + ∆Hj(x, t)).

A set S∗ is called inefficient at (x, t), with x ∈ X and t ∈ {0, . . . , T}, if there
exist α(S) > 0 for all S ⊂ N with

∑
S⊂N α(S) = 1 such that both of the

following inequalities hold:

Q(S∗) ≥
∑
S⊂N

α(S)Q(S),

R(S∗, x, t) <
∑
S⊂N

α(S)R(S, x, t).

Otherwise S∗ is called efficient at (x, t).

The intuition behind efficient sets is as follows. An offer set S∗ ⊂ N is efficient if there
is no randomisation of other offer sets S ⊂ N such that the expected reward is strictly
greater than R(S∗, x, t) and the probability of a purchase is at most Q(S∗). Efficient sets
are on the efficient frontier of the trade-off between the expected revenue R(S∗, x, t) and
the probability of purchase Q(S∗).

Efficient sets can be identified using the largest marginal revenue procedure described by
Talluri & van Ryzin (2004a), which is the following: Initialise with the first efficient set
S0 = ∅. Then iteratively proceed as follows: Suppose Si is the i-th efficient set found by
the procedure. Then the (i+ 1)-th efficient set Si+1 is equal to

Si+1 = arg max

S :
Q(S)≥Q(Si)

R(S,x,t)≥R(Si,x,t)

R(S, x, t)−R(Si, x, t)

Q(S)−Q(Si)
.

The complexity of this procedure is O(m2n), where m is the number of efficient sets,
which is at most 2n. For large instances of n this procedure is computationally intractable,
so then the use of heuristics is needed. One heuristic (proposed by Talluri & van Ryzin,
2004a) is to use only a subset of all efficient sets and then use the largest marginal revenue
procedure. By looking at the specific instance certain offer sets can be ruled out. For
example, if a hotel offers the same room under the same conditions at two different prices
e80 and e120 at the same time, the price-sensitive customer would almost surely purchase
the room for e80.

In the base model no cancellations exist, such that ∆Hj(x, t) = 0 for all (x, t). Hence, the
set of efficient sets is the same for each (x, t). In contrast, for the cancellation model the
set of efficient sets is not necessarily the same for all (x, t), as is shown in Example 3.2.

Example 3.2. Consider Example 3.1. Let γ = (0.05, 0.0025, 0.001), C = 5,
T = 10. Consider the states (x, t1) and (x, t2), with t1 = 1, t2 = 10, and
x = (0, 0, 0). The efficient sets of state (x, t1) and (x, t1) are given in Table
3.2. Offer set {1, 3} is efficient in state (x, t1) but not in state (x, t2), and offer
set {1, 2} is not efficient in state (x, t1) but it is efficient in state (x, t2).



32 Revenue Management in the Hotel Industry

S Q(S) R(S, x, t1) R(S, x, t1) Efficient set for (x, t1) Efficient set for (x, t2)
∅ 0 0 0 Yes Yes
{1} 0.3 48 30 Yes Yes
{2} 0.4 40 40 No No
{3} 0.5 45 45 No No
{1, 2} 0.7 76 69 No Yes
{1, 3} 0.8 93 75 Yes No
{2, 3} 0.9 85 85 No No
{1, 2, 3} 1 101 95 Yes Yes

Table 3.2: Efficient sets for Example 3.1.

An important property of the base model is that an inefficient set is never an optimal
solution (see Proposition 2 in Talluri & van Ryzin, 2004a). Unfortunately, this property
generally does not hold for the cancellation model. To this end consider Example 3.3.

Example 3.3. Consider Example 3.2. In state x = (0, 0, 4) at time T offer
set {1, 2} is an optimal offer set. However, offer set {1, 2} is not efficient in
state x at time T , as was shown in Example 3.2.

3.3.2 Tractable Exact Solution: Linear and Equal Cancellations (LEC) As-
sumption

The model under the linear and equal cancellation Assumption 3.3 turns out to have the
elegant property that it can tractably be solved exactly. In order to see this we use some
derivations similar to Lautenbacher et alii (1999).

First consider the model under the independence of cancellations Assumption 3.1. The
statement in Lemma 3.1 is taken from Lautenbacher et alii (1999), Lemma 2.

Lemma 3.1. Under Assumption 3.1 we have that

H(x, t) =
∑
j∈N

Hj(xj , t),

where the function Hj(xj , t), 1 ≤ j ≤ n, satisfy the following recursive equa-
tions:

Hj(xj , t) =


(1− γj(xj))Hj(xj , t− 1) if t > 0,

+ γj(xj)(cj(t) +Hj(xj − 1, t− 1))

0if t = 0.

for all 0 ≤ t ≤ T .

Define ∆Hj(xj , t) by

∆Hj(xj , t) := Hj(xj + 1, t− 1)−Hj(xj , t− 1).

Lemma 3.2 below states that under the independence of cancellations assumption Equa-
tion (3.3) can be simplified.
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Lemma 3.2. Under Assumption 3.1 Equation (3.3) can be rewritten to

Ṽt(x) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(x, t) + Ṽt−1(x+ ej)

)
if t > 0,

+
∑
j∈N

γj(xj)
(
Ṽt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γj(xj)

)
Ṽt−1(x)

}
q(x) if t = 0,

where ∆Hj(xj , t) satisfies the following recursive formula

∆Hj(xj , t) =


(γj(xj + 1)− γj(xj))cj(t) if t > 1,

+ (1− γj(xj + 1))∆Hj(xj , t− 1)

+ γj(xj)∆Hj(xj − 1, t− 1)

0 if t = 1.

Now consider the linear cancellations Assumption 3.2. Lemma 3.3 below simplifies the
calculations of ∆Hj(xj , t) even further. The statement is taken from Lautenbacher et alii
(1999), Lemma 3.

Lemma 3.3. Under Assumption 3.2 ∆Hj(xj , t) is independent of the num-
ber of reservations xj such that we can write ∆Hj(t) = ∆Hj(xj , t) for all
j ∈ N . Moreover, ∆Hj(t) satisfies

∆Hj(t) =

{
γjcj(t) + (1− γj)∆Hj(t− 1) if t > 1,

0 if t = 1,

for all j ∈ N .

Finally, consider the model under the linear and equal cancellations Assumption 3.3. The-
orem 3.1 below shows that the states of the problem is significantly reduced. The state-
ment is an extension of Theorem 1 in Lautenbacher et alii (1999) with customer choice
behaviour.

Theorem 3.1.

Under Assumption 3.3 we have that Ṽt(x) = W̃t(y) for all (x, t), where
y =

∑
j∈N xj and W̃t(y) is given by the following formula:

W̃t(y) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + W̃t−1(y + 1)

)
if t > 0,

+ γyW̃t−1(y − 1)

+

(
1− λ

∑
j∈S

Pj(S)− γy

)
W̃t−1(y)

}
q(y) if t = 0.

(3.4)
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Proof. We prove that Ṽt(x) = W̃t(y) by induction to t. For t = 0 we have
that Ṽ (x, 0) = q(x) and W̃ (y, 0) = q(y). By Assumption 3.3 we have that

Ṽ (x, 0) = q(x) = q(y) = W̃ (y, 0),

so the statement holds for t = 0.

Suppose t > 0 and the statement holds for all values smaller than t. By
Assumption 3.3, Lemma 3.2, and Lemma 3.3 we have that

Ṽt(x) = max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + Ṽt−1(x+ ej)

)
+ γ

∑
j∈N

xj
(
Ṽt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)− γ
∑
j∈N

xj

)
Ṽt−1(x)

}
.

Using the induction hypothesis we can rewrite this to

Ṽt(x) = max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + W̃t−1(y + 1)

)
+ γyW̃t−1(y − 1) +

(
1− λ

∑
j∈S

Pj(S)− γy

)
W̃t−1(y)

}
,

and hence Ṽt(x) = W̃t(y).

Example 3.3 showed that in general inefficient sets can be optimal. However, under As-
sumption 3.3 inefficient sets are never an optimal solution, as Proposition 3.1 below
states. The set of efficient sets still depends on (x, t), so unfortunately these efficient sets
are not of much use to us.

Proposition 3.1. An inefficient set is never an optimal solution to Equation
(3.4).

Proof. See Appendix 3.A.

3.3.3 Independence of Cancellations Heuristic (IOC)

The Independence of Cancellations heuristic is appropriate for the model under the inde-
pendence of cancellations Assumption 3.1. The goal of this heuristic is to find a solution
under a model with general assumptions. In this approach we reduce the state space by
only keeping track of the total number of reservations rather than the number of reserva-
tions per product. Again we make the assumption that the probability that product j is
cancelled depends only on the number of reservations for product j, i.e., γtj(x) = γtj(xj)
(see the independence of cancellations Assumption 3.1), but we make no further assump-
tions. The advantage of this heuristic is that it can be applied to problems with general
cancellation probability functions.



RM under Custer Choice Behaviour with Cancellations and Overbooking 35

Define the one-dimensional state space Y by

Y := {y ∈ N |0 ≤ y ≤ Cmax } .

Each state y ∈ Y corresponds to the total number of reservations. Let γ(y, t) be the condi-
tional probability that a reservation is cancelled in state (y, t). Let c(y, t) be the expected
costs for a cancelled reservation in state (y, t). The Bellman equation corresponding to
this problem is

Wt(y) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj +Wt−1(y + 1)

)
if t > 0,

+γ(y, t)
(
− c(y, t) +Wt−1(y − 1)

)
+

(
1− λ

∑
j∈S

Pj(S)− γ(y, t)

)
Wt−1(y)

}
,

q(y) if t = 0.

(3.5)

The problem with using this one-dimensional state space is that we do not know the
expected costs c(y, t) and the conditional cancellation probability γ(y, t). This follows
from the fact that we do not know the mix of current reservations, since if we are in state
y ∈ Y we could be in any state x ∈ X with

n∑
j=1

xj = y.

The current mix of reservations depends on the past strategy and therefore c(y, t) and
γ(y, t) depend on the past strategy. To overcome this problem we propose the following
procedure to estimate c(y, t) and γ(y, t).

Let π be an arbitrary strategy. Let x̄(y, t) ∈ Rn be the expected mix of current reservations
in state y at time t. Let p(y, t) be the probability that we are in state y at time t. Let
pyt (xj = k) be the probability that we have k reservations for product j in state (y, t). For
strategy π we will explain a recursive procedure to calculate x̄(y, t), p(y, t), pyt (xj = k),
γ(y, t), and c(y, t).

Let y and t be arbitrary and suppose that we know x̄(y′, t′), p(y′, t′), γ(y′, t′), py
′

t′ (xj = k),
and c(y′, t′) for all t′ < t, for all k and j, and for all y′. Then we can evaluate their values
as stated in Lemmas 3.4 and 3.5 below.
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Lemma 3.4. Define p̂yt (xj = k) by

p̂yt (xj = k) = p(y + 1, t+ 1)

[
py+1
t+1 (xj = k + 1)γt+1

j (k + 1)

+ py+1
t+1 (xj = k)

∑
i6=j

y+1−k∑
k′=0

py+1
t+1 (xi = k′)γt+1

i (k′)

]

+ p(y, t+ 1)pyt+1(xj = k)

[
1− λ

∑
i∈S

P (S, i)

−
∑
i6=j

y−k∑
k′=0

pyt+1(xi = k′)γt+1
i (k′)− γt+1

j (k)

]

+ p(y − 1, t+ 1)

[
py−1
t+1 (xj = k − 1)λPj(S)

+ py−1
t+1 (xj = k)λ

∑
i∈S\{j}

Pj(S)

]
,

for all k. Then pyt (xj = k) is given by

pyt (xj = k) =
p̂yt (xj = k)∑y

k′=0 p̂
y
t (xj = k′)

.

Proof. See Appendix 3.A.

Lemma 3.5. x̄(y, t), p(y, t), γ(y, t), and c(y, t) can be found via the following
formulas:

x̄j(y, t) =

y∑
k=0

pyt (xj = k)k,

p(y, t) = p(y + 1, t+ 1)γ(y + 1, t+ 1) + λ
∑
j∈S

Pj(S)p(y − 1, t+ 1)

+

1− λ
∑
j∈S

Pj(S)− γ(y, t+ 1)

 p(y, t+ 1),

γ(y, t) =

n∑
j=1

y∑
k=0

pyt (xj = k)γtj(k),

c(y, t) =

∑n
j=1

∑y
k=0 p

y
t (xj = k)γtj(k)rj(t)

γ(y, t)
.

Moreover, under the linear and equal cancellation rates Assumption 3.3 we
have that

γ(y, t) =

n∑
j=1

γtj x̄j(y, t),

c(y, t) =

∑n
j=1 rj(t)γ

t
j x̄j(y, t)

γ(y, t)
.
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Proof. See Appendix 3.A.

We can use the equations from Lemma 3.4 and Lemma 3.5 to iteratively calculate the
conditional cancellation probability γ(y, t) and the expected costs c(y, t) of a cancelled
product in state (y, t) under a policy π.

The Independence of Cancellations algorithm iterates the following procedure until we hit
a stopping criterion, for example after a fixed number of iterations. First, start with an
arbitrary expected costs ĉ(y, t) and cancellation probability γ̂(y, t) for each state (y, t). A
good initial solution would be to use the linear and equal cancellation rates Assumption 3.3
and evaluate ĉ(y, t) and γ̂(y, t) according to the obtained strategy. Then solve the problem
using dynamic programming with Equation (3.5), where we use ĉ(y, t) as an approximation
of the expected costs c(y, t) and γ̂(y, t) as an approximation of the conditional cancellation
probability γ(y, t). Then we find an optimal strategy π which can be used use to calculate
the expected costs ĉ(y, t) and the c cancellation probability γ̂(y, t) corresponding to π,
using the equations in Lemma 3.4 and Lemma 3.5. See Algorithm 3.1 for a summary of
this heuristic.

Algorithm 3.1. Independence of Cancellations Heuristic (IOC)

1. Start with initial expected costs ĉ(y, t) and cancellation probability
γ̂(y, t).

2. Find an optimal strategy π with dynamic programming on Equation (3.5)
using ĉ(y, t) as an approximation for c(y, t) and γ̂(y, t) as an approxima-
tion for γ(y, t).

3. Use π and the equations in Lemma 3.4 and Lemma 3.5 to calculate ĉ(y, t)
and γ̂(y, t).

4. Go to step 2 unless a stopping criterion is hit.

We now investigate the complexity of Step 2 of this algorithm.

Efficient Sets

Another elegant property of the Independence of Cancellations (IOC) algorithm is that
only efficient offer sets are potential optimal sets, while the others are never optimal. More-
over, this set of potential offer sets is the same for all states (y, t). In Proposition 2 of
Talluri & van Ryzin (2004a) it is shown that in the customer choice base model inefficient
sets are never optimal. We show in Proposition 3.2 that inefficient sets are never optimal
for the IOC algorithm and that the set of efficient sets is the same for all (y, t).

Proposition 3.2. An inefficient set is never an optimal solution to Equation
(3.5). Moreover, the set of efficient sets is the same for all (x, t).

Proof. In Equation (3.5) we have that ∆Hj(y, t) = 0 for all j and (y, t), so
the set of efficient sets is the same for all (y, t). The proof that inefficient sets
are never an optimal solution to Equation (3.5) is analogous to the proof of
Proposition 3.1.
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3.3.4 Linear Cancellation Rates Heuristic (LCR)

The goal of the second heuristic is to be fast and efficient. To accomplish this we do the
following:

− Work under the linear cancellation rates Assumption 3.2. This way the model is
restricted, but computation time is gained.

− Only keep track of the total number of reservations. Information on the number of
reservations per product is lost, but computation time is gained.

− Only consider efficient sets in our policy. Then the computation time is reduced
because less solutions need to be considered, but some potential better solutions are
lost.

− Use the same set of efficient sets in each state. Computation time is gained because
the efficient sets do not have to be evaluated for each state, but some potential better
solutions are lost.

In the second heuristic we work under the linear cancellation rates, i.e., assume that
γj(xj) = γjxj for all j. The heuristic can also be applied if we work under the linear
and equal cancellation rates Assumption 3.3, since this assumption is a special case of
the linear cancellation rates assumption. We solve a one-dimensional problem, where
we only keep track of the total number of reservations and not of the reservations per
product. We reformulate the problem such that the costs of cancellations are incorporated
in the maximisation term of the Bellman equation, as described in Theorem 3.1. Only
this time we only consider offer sets that are efficient. In particular, choose the efficient
sets that result from taking R(S, x, t) = 0 for all (x, t). The motivation for choosing only
these efficient sets is that the numerical results in Section 3.5 show that (a) leaving out
inefficient solutions does not have a great impact on performance; and (b) choosing among
the efficient sets is better than choosing among an equal number of arbitrary sets. The
Bellman equation that has to be solved is given by

W̃t(y) =



max
S⊂N

efficient

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + W̃t−1(y + 1)

)
if t > 0,

+ γyW̃t−1(y − 1)

+

(
1− λ

∑
j∈S

Pj(S)− γy

)
W̃t−1(y)

}
q(y) if t = 0.

(3.6)

However, assume that the cancellation probabilities differ per product. We do not know
the cancellation probability γ if we are in state y, since we do not know what the mix
of current reservations is. This problem is similar to the problem we described in Section
3.3.3. We could use Lemma 3.5 to approximate γ iteratively, but this is computationally
expensive. Moreover, numerical results show that simpler approximations outperform this
method (see also Section 3.5). An example of a simple approximation of γ is taking the
average of all γ’s:

γ :=
1

n

∑
j∈N

γj . (3.7)

The advantage of using this method over the Independence of Cancellations algorithm is
that it is computationally faster and performs better under the linear cancellation rates
assumption. However, the downside of this method is that it can not be applied to general
cancellation probabilities. See Algorithm 3.2 for an overview of the heuristic.
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Algorithm 3.2. Linear Cancellation Rates Heuristic (LCR)

1. Estimate γ̂ by using (γj), for example by Equation (3.7).

2. Find an optimal strategy of Equation (3.6).

3.3.5 Multiple Room Types Heuristic (MRT)

In practice hotels often have multiple room types. However, the assumption was made
that the hotel has C rooms of the same type. Expanding the solution space with multiple
room types leads to an intractable problem. To solve this problem, combine the Linear
Cancellation Rates heuristic of Section 3.3.4 with one-step improvement, i.e., one step
of the well known policy iteration (see also Puterman, 1994). In this approach, first find
an approximation of the value function, and then use one maximisation step of policy
iteration to find a better solution.

First consider the different room types separately. Let I be the set of room types. For
each room type i ∈ I we have a certain capacity Ci. For each room type we only keep
track of the total number of reservations for that room type. Under the linear and equal
cancellation rates Assumption 3.3 this gives the exact solution; see Theorem 3.1. Let Si
be the offer set of products for room type i and let Ni be the set of products for room type
i. Solve the problem per room type, as if it would be the only room type we have, using
the Linear Cancellation Rates heuristic described in Section 3.3.4. The Bellman equation
per room type i ∈ I is given by

W̃ i
t (y) =



max
Si⊂Ni
efficient

{
λ
∑
j∈Si

Pj(Si)
(
rj −∆Hj(t) + W̃ i

t−1(y + 1)
)

if t > 0,

+γiyW̃ i
t−1(y − 1)

+

(
1− λ

∑
j∈Si

Pj(Si)− γiy

)
W̃ i
t−1(y)

}
q(y) if t = 0.

(3.8)

Let u be the vector containing the number of reservations per room type, such that ui
represents the number of reservations for room type i ∈ I. Then we want to solve the
following recursive formula:

Ut(u) =



max
S⊂N

{
λ
∑
i∈I

∑
j∈Si

Pj(Si)
(
rj −∆Hj(t) + Ut−1(u+ ei)

) if t > 0,

+
∑
i∈I

∑
j∈Ni

γjujUt−1(u− ei)


+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γjuj

)
Ut−1(u)

}
q(u) if t > 0.

However, this problem is still too large to solve, even if we use a small number of room
types. Therefore, use one-step improvement to solve this problem. Suppose u is the current
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state and we wish to decide which products to offer. We approximate Ut−1(u) by the
following formula:

Ũt−1(u) :=
∑
i∈I

W̃ i
t−1(ui). (3.9)

The terms Ũt−1(u + ei) and Ũt−1(u − ei) can be approximated similarly. Then do one
maximisation step to find an approximation Ūt(u) for Ut(u):

Ūt(u) =



max
S∈N

{
λ
∑
i∈I

∑
j∈Si

Pj(Si)
(
rj −∆Hj(t) + Ũt−1(u+ ei)

) if t > 0,

+
∑
i∈I

∑
j∈Ni

γjxjŨt−1(u− ei)


+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γjxj

)
Ũt−1(u)

}
q(u) if t = 0.

(3.10)

The multiple room type heuristic is summarised in Algorithm 3.3 below.

Algorithm 3.3. Multiple Room Types

1. Fix state u.

2. Evaluate W̃ i
t−1(ui), W̃

i
t−1(ui+ 1), and W̃ i

t−1(ui−1) using Equation (3.8)
for all i ∈ I.

3. Define Ũt−1(u), Ũt−1(u+ ei), and Ũt−1(u− ei) using Equation (3.9).

4. Use Equation (3.10) to find an improved approximation Ūt(u) of Ut(u).

Remark. The action space of this problem is still large, even though we
only use efficient sets per room type. The concept of efficient sets is only
defined for single-resource problems. In the context of multiple room types
it is worth looking into a generalisation of efficient sets to multiple-resource
problems. However, this is beyond the scope of this chapter.

3.4 Estimating Parameters

In this section a method is proposed to estimate the parameters of the model from real
data. Ideally an estimation model is used under perfect knowledge, i.e., assume we know
(a) which products were offered at what time, (b) when customers arrived, (c) when they
made a purchase, and (d) when they cancelled their reservation. A maximum-likelihood
estimation model under perfect knowledge is described in Appendix 3.B. In practice not
all information is available, unfortunately. For example, the no-purchase option is rarely
observed. To overcome this problem we need to consider methods that deal with censored
data. One method is the well-known expectation-maximisation algorithm, which is de-
scribed in Appendix 3.B. However, the expectation-maximisation algorithm is unattrac-
tive for practical purposes for two reasons. First, the computation time is notoriously
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long. Second, the method estimates the parameters of the discretised model instead of
the continuous model, which may lead to estimation errors. To overcome these problems
we propose an estimation model that is based on the excellent estimation method pro-
posed by Newman et alii (2014). The proposed method assumes the linear cancellation
rates Assumption 3.2 and that the purchase probabilities are modelled by the multinomial
logit model (MNL), which is briefly explained in Appendix 3.B.

In what follows the purchase probabilities and the offer set depend on the time pe-
riod. Therefore, introduce the following notation. Let Ztj be the variable containing values
of the attributes of product j in time period t and let Zt = {Ztj}j . Let St be the set of
products that is offered in time period t. Let α be the utility of the no-purchase alterna-
tive. For convenience we introduce some notation. Let Ptj(α, β, St, Zt) be the probability
that product j is purchased in time period t under α, β, St, and Zt, i.e.,

Ptj(α, β, St, Zt) :=
exp(β>Zjt)

exp(α) +
∑
i∈St exp(β>Zit)

.

Define the probability Pt0(α, β, St, Zt) that the no-purchase option is chosen as

Pt0(α, β, St, Zt) :=
exp(α)

exp(α) +
∑
i∈St exp(β>Zit)

.

It is convenient to use the probability Pt∗(α, β, St, Zt) that a product is purchased, i.e.,
the probability that the no-purchase alternative is not chosen. Hence Pt∗(α, β, St, Zt) is
given by

Pt∗(α, β, St, Zt) :=
∑
j∈St

Ptj(α, β, St, Zt)

=

∑
j∈St exp(β>Zjt)

exp(α) +
∑
i∈St exp(β>Zit)

= 1− Pt0(α, β, St, Zt).

Finally, let Ptj|∗(β, St, Zt) be the probability that product j is purchased under the con-
dition that the customer made a purchase, i.e.,

Ptj|∗(β, St, Zt) :=
exp(β>Zjt)∑
i∈St exp(β>Zit)

.

We divide time into T time periods and assume that the parameters to be estimated are
constant within these periods. Note that we allow more than one event to happen in one
time period. The parameters that we need to estimate are: the no-purchase utility α;
the weights β of the attributes of the MNL model; the parameters γj of the exponential
distributions that model the cancellations; and the parameter λ of the Poisson process
that models the arriving customers. We do this by using maximum likelihood estimation.

Assume that the offer set St does not change within this time period. Suppose we observe
zjt purchases for product j in time period t. Let ζj(y) be the total number of cancella-
tions for product j when there were y reservations for product j, measured over all time
periods. Suppose that we observe that for a period of tj(y) there were y reservations for
product j, again measured over all time periods. Note that tj(y) might be 0.

The maximum likelihood function L(z, ζ|α, β, γ, λ) is the probability that we observe z
and ζ under given α, β, γ, and λ. Since the arrival process is independent from the
cancellation process we can write

p(z, ζ|α, β, γ, λ) = p(z|α, β, γ, λ)p(ζ|α, β, γ, λ),
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with p(z|α, β, γ, λ) the probability that we observe z given α, β, γ, and λ; and
p(ζ|α, β, γ, λ) the probability that we observe ζ given α, β, γ, and λ. Since the can-
cellations are only dependent on γ we can even write

p(ζ|α, β, γ, λ) = p(ζ|γ),

with p(ζ|γ) the probability that we observe ζ given γ. This also follows from the derivations
below.

The cancellation processes are independent from each other, so we can write

p(ζ|γ) =
∏
j∈N

p(ζj |γj),

with p(ζj |γj) the probability that we observe ζj given γj . Moreover, if we consider the
time intervals tj(y) we can write

p(ζj |γj) =

Cmax∏
y=0

p
(
ζj(y)

∣∣γj).
Since the cancellations follow a Poisson process with parameter γjytj(y) the probability
p(ζj(y)|γj) that we observe ζj(y) cancellations in time period t conditional on γj is equal
to

p
(
ζj(y)

∣∣γj) =
(
γjytj(y)

)ζj(y) e−γjytj(y)

ζj(y)!
.

If we take the natural logarithm of p(ζj(y)|γj) we get

log
(
p(ζj(y)|γj)

)
= ζj(y) log(γj) + ζj(y) log

(
ytj(y)

)
− γjytj(y)− log

(
ζj(y)!

)
.

Combining all equations we find

log
(
p(ζ|γ)

)
=
∑
j∈N

Cmax∑
y=0

[{
ζj(y) log(γj)− γjytj(y)

}
+
{
ζj(y) log

(
ytj(y)

)
− log

(
ζj(y)!

)}]
.

If we want to maximise this with respect to γ, then we can solve the following equations
separately for each j ∈ N :

Cmax∑
y=0

[
ζj(y) log(γj)− γjytj(y)

]
. (3.11)

If we take the first derivative with respect to γj we find

1

γj

Cmax∑
y=0

ζj(y)−
Cmax∑
y=0

ytj(y).

The optimum can be found by setting this equation to zero. This gives

γj =

∑Cmax

y=0 ζ(y)∑Cmax

y=0 ytj(y)
.
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Let ζj :=
∑Cmax

y=0 ζ(y), i.e., ζj is the total number of cancellations for product j. Then we
have that

γj =
ζj∑Cmax

y=0 ytj(y)
. (3.12)

By taking the second derivative of Equation (3.11) we find

− 1

γ2
j

Cmax∑
y=0

ζj(y),

which is negative, such that the optimum found in Equation (3.12) is a maximum.

For completeness we below present the derivations of the results by Newman et alii (2014),
which can directly be applied to our model.

The expression for p(z|α, β, γ, λ) does not depend on γ so we can write p(z|α, β, λ). Con-
ditioning to the number of reservations mt in time period t gives

p(z|α, β, λ) = p(z|m,β, λ)p(m|α, β, λ),

where m = (m1, . . . ,mT ). Note that p(z|m,β, λ) does not depend on the no-purchase al-
ternative parameter α. The probability p(z|m,β, λ) that we observe z under the conditions
that we observe mt reservations with parameter β and λ is equal to

p(z|m,β, λ) =

T∏
t=1

(
mt

z1t, . . . , znt

) ∏
j∈N

[
Ptj|∗(β, St, Zt)

]zjt
.

Note that since
∑
j∈N zjt = mt and zjt = 0 for j /∈ St we have that

∏
j∈N

[
Ptj|∗(β, St, Zt)

]zjt
=
∏
j∈St

[
exp(β>Zjt)∑
i∈St exp(β>Zit)

]zjt
=

∏
j∈St

[
exp(β>Zjt)

]zjt[∑
i∈St exp(β>Zit)

]mt .

By taking the natural logarithm we find

log
(
p(z|m,α, β, λ)

)
=

T∑
t=1

log

(
mt!

z1t! · . . . · znt!

)
+
∑
j∈St

zjtβ
>Zjt −mt log

(∑
i∈St

exp(β>Zit)

)
.

If we want to maximise this with respect to β we only have to consider

T∑
t=1

∑
j∈St

zjtβ
>Zjt −mt log

(∑
i∈St

exp(β>Zit)

) . (3.13)

On the other hand, mt follows a Poisson distribution with parameter
λ
∑
i∈S Pt∗(α, β, St, Zt). Therefore the probability p(m|α, β, λ) that we observe mt

reservations in time period t is given by

p(m|α, β, λ) =

T∏
t=1

[
λ
∑
i∈S Pt∗(α, β, St, Zt)

]mt
e−λPt∗(α,β,St,Zt)

mt!
.



44 Revenue Management in the Hotel Industry

Taking the logarithm gives

log
(
p(m|α, β, λ)

)
=

T∑
t=1

mt

[
log
(
λPt∗(α, β, St, Zt)

)]
− λPt∗(α, β, St, Zt)− log(mt!).

(3.14)

Note that if we maximise Equation (3.14) with respect to α and λ we can ignore the last
term. The first partial derivative with respect to λ equals

1

λ

T∑
t=1

mt −
T∑
t=1

Pt∗(α, β, St, Zt).

The optimum is attained at

λ =

∑T
t=1mt∑T

t=1 Pt∗(α, β, St, Zt)
, (3.15)

where
∑T
t=1mt is the total number of observed reservations. The second partial derivative

with respect to λ equals

− 1

λ2

T∑
t=1

mt,

which is negative for λ 6= 0, so the optimum from Equation (3.15) is a maximum. We can
replace λ in Equation (3.14) by Equation (3.15), which gives

log
(
p(mt|α, β, λ)

)
=

T∑
t=1

mt log

( ∑T
t=1mt∑T

t=1 Pt∗(α, β, St, Zt)
Pt∗(α, β, St, Zt)

)

−
∑T
t=1mt∑T

t=1 Pt∗(α, β, St, Zt)
Pt∗(α, β, St, Zt)− log(mt!).

(3.16)

If β is given we can find α by maximising Equation (3.16) with respect to α. Then we
can find λ by using Equation (3.15).

The estimation procedure is summarised as follows.

Algorithm 3.4. Three-Step Continuous Estimation

1. Find γ̂ using Equation (3.12).

2. Find β̂ using Equation (3.13).

3. Use the estimate β̂ to find α̂ using Equation (3.16). Then use β̂ and α̂ to

find λ̂ using Equation (3.15).

Theorem 3.2 below states that Algorithm 3.4 provides consistent estimators. Moreover,
the estimator for the cancellation parameters γ is an unbiased estimator.

Theorem 3.2. As the sample size increases, Algorithm 3.4 leads to consis-
tent estimators. Moreover, the estimator for γ found by Equation (3.12) is
unbiased.
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Proof. Theorems 1 and 2 in Newman et alii (2014) show that the estimators
of β and (α, λ) are consistent, respectively. To show that the estimator γ̂ of
the cancellation parameter found by Equation (3.12) is a consistent estimator,
we consider the cancellation parameters separately per product. Consider a
product j ∈ N . Let γ∗j be the true parameter and let γkj be the parameter
obtained using Equation (3.12) with sample size k. In other words,

γkj =

Cmax∑
y=0

ζkj (y)

Cmax∑
y=0

ytkj (y)

,

with ζkj (y) the observed number of cancellations in state y and tkj (y) the
observed time spent in state y with k observations. We can think of one
observation as an arrival day with all booking history. The expected number
of cancellations when the state is y is equal to γ∗j yt

k
j (y). Note that tkj (y) is the

sum of k i.i.d. random variables tj(y), where tj(y) is the time spent in state y
for one observation. As the sample size increases, we have that

lim
k→∞

ytkj (y)

k
= yE[tj(y)].

On the other hand, ζkj (y) is the sum of k i.i.d. random variables ζj(y), where
ζj(y) is the number of cancellations for one observation. As the sample size
increases, we have that

lim
k→∞

ζkj (y)

k
= E[ζj(y)] = E[E[ζj(y)|tj(y)]] = E[γ∗j ytj(y)] = γ∗j yE[tj(y)].

Hence we have that

lim
k→∞

γkj = lim
k→∞

1

k

Cmax∑
y=0

ζkj (y)

1

k

Cmax∑
y=0

ytkj (y)

=

γ∗j

Cmax∑
y=0

yE[tj(y)]

Cmax∑
y=0

yE[tj(y)]

= γ∗j ,

so Equation (3.12) is a consistent estimator. Moreover, using conditional ex-
pectation it follows that

E[γkj ] = E

E


Cmax∑
y=0

ζkj (y)

Cmax∑
y=0

ytkj (y)

∣∣∣∣∣∣∣∣∣∣∣
tkj (·)



 = E


Cmax∑
y=0

γ∗j yt
k
j (y)

Cmax∑
y=0

ytkj (y)

 = γ∗,

so Equation (3.12) provides an unbiased estimator.

3.5 Numerical Results

In this section numerical results are provided to validate the customer choice cancellation
model. The four main results that are provided are: 1) the fast computation time of the
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estimation method described in Section 3.4; 2) the fast computation time of the heuristics;
3) the good performance of the heuristics; and 4) the performance of the heuristics under
estimated parameters. The parameters that are used are based on Simulation Example
2 in Talluri & van Ryzin (2004a). Let n = 10 be the number of products sold with
corresponding price vector

r = (240, 220, 190, 160, 120, 112, 96, 80, 74, 70).

Demand, cancellation rates, and purchase probabilities are independent from the time
period t. To allow the study of the effect of high volume in demand and low volume in
demand the load factor l is introduced. In our studies we use l ∈ {0.6, 0.8, 1, 1.2, 1.4}. De-
mand λ per time unit is then defined as

λ(C, l, T ) =
Cl

T
.

A low value of l implies a low demand relative to the capacity C and a high value of l
implies a high demand relative to the capacity C.

Purchase probabilities are modelled by the MNL model. The only attribute that we con-
sider is price, but we assume that there exist high price-sensitive and low price-sensitive
customers which have different parameters βH = −0.005 and βL = −0.0015, respectively
(as in Talluri & van Ryzin, 2004a). The no-purchase parameter is set to α = 0 such that
the MNL model is the same as in Talluri & van Ryzin (2004a). We allow overbooking up
to 20% of the total capacity C. Cancellation rates are assumed linear and the parameters
γ ∈ Rn depend on l and T in the following way:

γ = (18/25, 8/25, 14/25, 7/25, 1/5, 9/25, 4/25, 2/25, 1/125, 1/25)
l

T
.

The policies that follow from the heuristics need to be compared using the corresponding
revenue. For small problem instances the exact solution method can be used, but for
larger instances the problem instance is intractable. In that case simulation is used to
estimate the revenue corresponding to a policy. The estimation errors are between 0.1%
and 0.4%.

3.5.1 Computation Time of Estimation Methods

An estimation method only has value for practical applications if it can finish in reasonable
time. The three-step continuous estimation method (3SC) described in Section 3.4 has
this property.

In Table 3.3 the computation time of 3SC is compared with the computation time of
Expectation-Maximisation (EM) for different sample sizes. The results show that the
computation time of the EM-algorithm increases drastically when the sample size in-
creases, while the computation time of the 3SC-method does not. This is only for a small
example with C = 20 rooms, so the results will be worse for practical instances. Fortu-
nately, the 3SC-method can be used also for larger instances, with more capacity. In Table
3.4 the computation time of 3SC is given for a hotel with C = 200 rooms for different
sample sizes. The computation time increases but it stays reasonable.

3.5.2 Computation Time: Heuristics vs. Exact Solution

In the analysis of the cancellation model it was stated that the model suffers from the
curse of dimensionality. The state space of the Markov decision process is too large, such
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Computation time
Observation days EM 3SC

10 219.357 42.611
20 650.314 34.159
50 2869.260 39.311
100 9446.129 34.075

Table 3.3: Computation times (in seconds) for estimating parameters using EM and 3SC
for C = 20, T = 100, n = 10, and different number of observation days.

Observation days Computation time
10 50.47
20 55.39
50 64.52
100 81.22
200 112.98

Table 3.4: Computation time for 3SC estimation method for different number of observation
days, using C = 200, T = 1000, n = 10.

that solving the exact problem takes too much time. In Table 3.5 the computation times of
the solution methods are presented for a small example, where C = 10, T = 20, l = 1, and
the number of products n varies from 2 to 10. The solution method where no cancellations
are considered is used as a benchmark, denoted by TvR. Evaluating instances with n > 6
using the exact solution method causes system to be out of memory and the exact solution
can therefore not be computed.

This example shows that when the number of products increases the computation time
increases drastically, while the computation times for the heuristic stay more or less
constant. In Table 3.6 below the computation times of the heuristics are presented for a
larger instance, where C = 200, T = 1000, and n = 10. Even in this case the computation
time is negligible.

Computation Time
n Exact IOC LCR TvR
2 0.229 0.295 0.013 0.009
3 1.020 0.292 0.013 0.008
4 4.293 0.327 0.011 0.008
5 15.041 0.309 0.011 0.008
6 49.082 0.309 0.010 0.009
7 - 0.318 0.010 0.011
8 - 0.318 0.011 0.009
9 - 0.327 0.012 0.010
10 - 0.333 0.012 0.012

Table 3.5: Computation times heuristics vs. exact solution method, using C = 10, T = 20,
load factor l = 1, n = 2, . . . 10.

3.5.3 Performance of Solution Methods

The cancellation model is only useful if the tractable heuristics outperform the base
model. To this end, consider a large instance, with C = 200 rooms and T = 1000 time
periods. The load factors l that are considered are {0.6, 0.8, 1, 1.2, 1.4}. In Table 3.6 the
results are presented.

There are several noteworthy observations from Table 3.6. First and foremost, using the
policies found by the IOC and LCR heuristics lead to solutions with higher revenue
compared the TvR solution method (except for the case that l = 0.6, when LCR still
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load factor IOC LCR TvR random ∆IOC/TvR ∆LCR/TvR ∆LCR/random

0.6 16,878 17,014 16,904 11,981 -0.15% 0.65% 42.00%
0.8 21,390 21,691 21,252 15,492 0.65% 2.06% 40.01%
1.0 25,297 25,949 24,169 18,818 4.67% 7.37% 37.90%
1.2 27,732 29,859 26,154 21,972 6.03% 14.17% 35.89%
1.4 29,386 33,225 27,848 24,969 5.52% 19.31% 33.06%

Comp. time 7.10 0.58 0.47

Table 3.6: Performance of the heuristics over the base model, using C = 200, T = 1000,
n = 10, and l ∈ {0.6, 0.8, 1, 1.2, 1.4}.

outperforms TvR, but IOC is slightly outperformed by TvR). Therefore it is reasonable
to consider cancellations in the decision making process. Taking cancellation into account
leads to a revenue gain of up to 20%.

Second, the IOC algorithm performs better than the TvR algorithm, but worse than the
LCR algorithm. This is the motivation for choosing LCR over IOC if we work under the
linear cancellation rates Assumption 3.2, but choosing IOC over TvR if we work with
general probability rates under the independence of cancellations Assumption 3.1.

Third, the effects of taking cancellations into account increase when the arrival volume
increases. This is intuitively clear: if the arrival rate is higher, the gap caused by a
cancelled reservation will be filled quickly. If you do not take cancellations into account,
the gap caused by the cancelled reservation will not be filled, which implies a loss in
revenue.

3.5.4 Estimation Accuracy vs. Performance of Solution Methods

Estimation errors potentially lead to bad performance of the optimisation model. Depend-
ing on the sample size the estimation error might be small or large. In the next simulation
the performance of the solution method using estimated parameters is measured. Again
a large instance is considered, where C = 200, T = 1000, and n = 10. The load factor
l is given different values, namely {0.6, 0.8, 1, 1.2, 1.4}, to consider the effect of different
demand volumes. For each load factor a dataset of size 100 (arrival days) is created, from
which the parameters are estimated. The estimated parameters are used by all heuristics
to find the corresponding policy and revenue. In Table 3.8 the results of the estimation
are presented. The true values as well as the estimated values are presented.

Load factor
0.6 0.8 1 1.2 1.4

IOC
True 16,843 21,408 25,316 27,748 29,406
Est. 17,168 20,198 24,277 26,764 30,039

LCR
True 16,996 21,685 25,964 29,905 33,186
Est. 17,212 20,222 24,356 27,876 33,590

TvR
True 16,872 21,270 24,138 26,173 27,862
Est. 17,162 20,080 23,151 24,758 28,432

Table 3.7: Performance of the heuristics under estimated values.

In Table 3.7 the revenues corresponding to load factor l, heuristic, and estimated or true
parameter set is given. From this table several observations can be made. Firstly, the
heuristics outperforms the TvR method in all cases: for all load factors, for all parameter
sets, true or estimated. This fact suggests that choosing a heuristic that takes cancellations
into account is preferred over the TvR model, even if the parameters are estimated and
thus contain errors.
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Second, the model using the estimated parameters might outperform the model with the
true parameters, or it might not. It seems that in this instance the extreme load factors
(l = 0.6 and 1.4) lead to a better performance of the model under estimated parameters
for all heuristics, while with the other load factors the model under the true parameters
performs better.

3.6 Discussion

In this chapter we analysed the customer choice cancellation model in Section 3.2, in-
cluding simplified versions that result from Assumptions 3.1, 3.2, and 3.3. Moreover, we
introduced several solution methods in Section 3.3 and estimation methods in Appendix
3.B. In this section we briefly describe some guidelines for selecting a model, a solution
method, and an estimation method. Moreover, we briefly discuss an extension of the
cancellation model to a more realistic choice-based network cancellation model.

3.6.1 Selecting an Appropriate Model, Solution Method, and Estimation
Method

In practice one needs to make a choice which model to use before deciding about the
solution method and estimation method. To this end, a balance must be established for
the trade-off between a good model, a good estimation method, and a good solution
method. If little restriction is put on the cancellation probabilities, heuristics need to
be used unless the problem is small. Subsequently, complex cancellation rate functions
need to be estimated. On the other hand, under the linear and equal cancellation rates
Assumption 3.3 the problem can be solved exactly in an efficient way, if the action space
small. However, the assumption that cancellation probabilities are equal for all products
is rather strong and not realistic in many cases.

For different model instances different solution methods and estimation methods may
be appropriate. There are three dimensions that have to be considered when choosing a
solution method: the model choice, the size of the state space, and the size of the action
space. When choosing an estimation method we need to consider the model choice and
in particular the model choice for the purchase probabilities and cancellation rates.

The efficient three-step estimation Algorithm 3.4 can only be applied to a model that
satisfies Assumption 3.2 or 3.3 and the purchase probabilities are modelled by the multi-
nomial logit model. In all other cases the expectation-maximisation algorithm described
in Appendix 3.B can be used.

If none of the Assumptions 3.1, 3.2, or 3.3 is satisfied, we can only use the exact solution
method to solve the problem. The computation time of this method may be prohibitively
long if the state space or the action space is large.

Under the independence of cancellations Assumption 3.1 only (the reformulation of) the
exact method described by Equation (3.3) or the Independence of Cancellations heuristic
(IOC) described by Algorithm 3.1 are appropriate. If the state space or the action space
is large we use the IOC heuristic and if the state space and the action space are small we
can use the exact solution method.

Under the linear cancellation rates Assumption 3.2 we can apply the exact method, the
IOC heuristic, and the Linear Cancellation Rates heuristic (LCR). However, numerical
results show that LCR outperforms IOC under the linear cancellation rates assumption,
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so we will not consider IOC here. If both the action space and the state space are small,
we will use the exact method. If however either the action space is large or the state space
is large we prefer LCR because the exact method is intractable. The action space can be
small when the state space is large if n is small but C is large.

Under the linear and equal cancellation rates assumption the problem can be solved
exactly using Equation 3.4. However, if the action space is too large we have to use the
LCR heuristic.

3.6.2 Future Directions: Choice-Based Network Cancellation Model

In practice it is common that fare products consist of multiple night stays/multiple flight
legs, so it is worth looking at network RM problems. The theory described in this chapter
is not sufficient to solve these complex problems. However, we provide an outline of a
way to approach this problem. The choice-based network model by Liu & van Ryzin
(2008) could be extended to include cancellations. The network consists of m legs and
n fare products, where a fare product is now not only a combination of a price rj and
conditions, but also a combination of legs consumed by the product, e.g., several nights
for a hotel stay.

As in the single-resource case we can write the dynamic programming formulation to solve
the problem. In the network base model (without cancellations) we have to keep track of
the available resources, which is at most a vector of size m. Liu & van Ryzin (2008) argue
that this problem is intractable and provide a choice-based linear programming heuristic
(CDLP) to solve the problem in reasonable time. Now if we also consider cancellations we
have to keep track of the number of reservations per product. This is a vector of size at
most 2m−1, so we need to consider heuristics. One heuristic is to use state space reduction
techniques similar to methods described in this chapter. Instead of keeping track of pur-
chases of all products we can keep track of the availability of each resource, which reduces
the state-space to an m-dimensional vector, as in the network base model. A heuristic
similar to CDLP could be used to solve the remaining problem. However, cancellations
contribute to the complexity of modelling and solving such heuristic. More research is
necessary to investigate an efficient method to model and solve the choice-based network
cancellation model. This topic would enrich the choice-modelling literature, but this is
beyond the scope of this chapter.

3.7 Concluding Remarks

Cancellations have a big impact on revenue. Our model incorporates cancellations in the
customer choice behaviour setting of RM. Policies that are optimal in a setting where
cancellations are not considered can lead to a revenue loss of up to 20% compared to an
optimal policy in our setting where cancellations are considered.

The exact solution can not be evaluated for all practical purposes because of the curse of
dimensionality. To overcome this problem we introduced three heuristics: (1) the Inde-
pendence of Cancellations heuristic 3.1, which reduces the state space and can be applied
to models with general cancellation rates; (2) the Linear Cancellation Rates heuristic
3.2, which also reduces the state space and is appropriate under the linear cancellations
Assumption 3.2; and (3) heuristic 3.3, which is an extension of the Linear Cancellation
Rates algorithm and can be used for a hotel with several room types.
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Two key results in this study ensure that the customer choice cancellation model can be
an effective method for practitioners. First, the Linear Cancellation Rates heuristic from
Section 3.3.4 is fast and gives a solution close to optimal. Second, the parameters of the
model can be estimated in a consistent and fast way using Algorithm 3.4.

The results of this study can function as a foundation for several topics of further re-
search. First of all, the effects of cancellation conditions and overbooking policies in com-
bination with customer choice behaviour can now be studied with our customer choice
cancellation model. Second, our customer choice cancellation model can be extended to
include group bookings and multiple night stays/multiple flight legs, which are also very
common in practice. Finally, cancellations can be embedded in other RM models to im-
prove performance.

3.A List of Proofs

Proof of Proposition 3.1.

First we rewrite Equation (3.3) by taking all terms that do not depend on S
out of the maximisation part. This leads to the following equation:

W̃t(y) = max
S⊂N

{
λ
(
R(S, y, t)−Q(S)∆W̃t−1(y)

)}
+ γy∆W̃t−1(y − 1) + W̃t−1(y),

(3.17)

with ∆W̃t−1(y) := W̃t−1(y)− W̃t−1(y + 1).

Let S∗ ⊂ N be an inefficient set, i.e., there exist α(S) ≥ 0 for all S ⊂ (N)
with

∑
S⊂N α(S) = 1 and

Q(S∗) ≥
∑
S⊂N

α(S)Q(S), R(S∗, y, t) <
∑
S⊂N

α(S)R(S, y, t).

Then we have that

λ
(
R(S∗, y, t)−Q(S∗)∆W̃t−1(y)

)
< λ

(∑
S⊂N

α(S)R(S, y, t)−
∑
S⊂N

α(S)Q(S)∆W̃t−1(y)

)
=
∑
S⊂N

α(S)λ
(
R(S, y, t)−Q(S)∆W̃t−1(y)

)
.

Since α(S) defines a probability, there is at least one S ⊂ N such that

R(S∗, y, t)−Q(S∗)∆W̃t−1(y) < R(S, y, t)−Q(S)∆W̃t−1(y).

Hence S∗ is not optimal.

Proof of Lemma 3.4. The probability that xj ∈ {0, . . . , y} in state (y, t)
is equal to 1. Therefore the probability pyt (xj = k) that xj = k for some
k ∈ {0, . . . , y} if we are in state (y, t) is equal to the probability p̂yt (xj = k)
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that xj = k and we are in state y if we are at time t divided by the probability
that we are in state y at time t. The latter is equal to

y∑
k=0

p̂yt (xj = k),

so we only have to find p̂yt (xj = k) for all k ∈ {0, . . . , y}.

There are three ways to get to state (y, t). First, one could come from state
(y+1, t+1) and a product was cancelled. The probability that we get to state
(y+1, t+1) is p(y+1, t+1). There are two possible values for xj at time t+1
that can lead to xj = k at time t, namely xj = k+1 at time t+1 and product
j is cancelled or xj = k at time t + 1 and product i 6= j is cancelled. The
probability that the former event occurs is equal to

p(y + 1, t+ 1)py+1
t+1 (xj = k + 1)γt+1

j (k + 1),

the probability that the latter event occurs is equal to

p(y + 1, t+ 1)py+1
t+1 (xj = k)

∑
i6=j

y+1−k∑
k′=0

py+1
t+1 (xi = k′)γt+1

i (k′).

The second possible state that one could come from to end up in state (y, t)
is state (y, t + 1) and neither a product was cancelled nor a product was
bought. The probability that we get to state (y, t+1) is equal to p(y, t+1). The
only possibility to get to xj = k in state (y, t) if nothing happens is that
xj = k in state (y, t+ 1). The probability for this event is pyt+1(xj = k). The
probability that nothing happens in state (y, t + 1) under the condition that
xj = k is then equal to

1− λ
∑
j∈S

Pj(S)−
∑
i6=j

y−k∑
k′=0

pyt+1(xi = k′)γt+1
i (k′)− γt+1

j (k).

The third possible state that we could come from to end up in state (y, t) is
state (y − 1, t+ 1) and a product was bought. The probability that we get to
state (y− 1, t+ 1) is equal to p(y− 1, t+ 1). There are two possible values for
xj at time t+ 1 that can lead to xj = k at time t, namely xj = k − 1 at time
t + 1 and product j is bought or xj = k at time t + 1 and product i 6= j is
bought. The probability that the former event occurs is equal to

py−1
t+1 (xj = k − 1)λPj(S),

the probability that the latter event occurs is equal to

py−1
t+1 (xj = k)λ

∑
i∈S\{j}

P (S, i).

Combining all events shows that p̂yt (xj = k) is equal to the stated formula for
all k.
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Proof of Lemma 3.5.

x̄j(y, t) is the expected number of reservations for product j in state (y, t),
which is equal to

x̄j(y, t) =

y∑
k=0

pyt (xj = k)k.

γ(y, t) is the probability that a product is cancelled in state (y, t). This is
a combination of the cancellation probabilities of individual products. The
cancellation probability of product j is equal to

y∑
k=0

pyt (xj = k)γtj(k).

Therefore γ(y, t) is equal to

γ(y, t) =

n∑
j=1

y∑
k=0

pyt (xj = k)γtj(k).

Moreover, under the linear and equal cancellation rates Assumption 3.3 we
have that

γ(y, t) =

n∑
j=1

γtj

y∑
k=0

pyt (xj = k)k =

n∑
j=1

γtj x̄j(y, t).

c(y, t) are the costs of a cancellation in state (y, t). If xj = k, then the expected
costs are rj(t). The expected costs for product j are thus

y∑
k=0

pyt (xj = k)γtj(k)rj(t).

Hence the expected costs for all products are

n∑
j=1

y∑
k=0

pyt (xj = k)γtj(k)rj(t).

If we condition on the event that a cancellation occurs in state (y, t) we see
that the expected costs for a cancellation are equal to

c(y, t) =

∑n
j=1

∑y
k=0 p

y
t (xj = k)γtj(k)rj(t)∑n

j=1

∑y
k=0 p

y
t (xj = k)γtj(k)

=

∑n
j=1

∑y
k=0 p

y
t (xj = k)γtj(k)rj(t)

γ(y, t)
.

Moreover, under the linear and equal cancellation rates Assumption 3.3 we
have that

c(y, t) =

∑n
j=1 rj(t)γ

t
j x̄j(y, t)

γ(y, t)
.
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Finally, p(y, t) is the probability that we are in state (y, t) at time t. First, we
could come from state (y+1, t+1) and we have a cancellation. The probability
that this occurs is equal to

p(y + 1, t+ 1)

n∑
j=1

y+1∑
k=0

py+1
t (xj = k)γtj(k)

= p(y + 1, t+ 1)γ(y + 1, t+ 1)

(3.18)

Second, we could come from state (y, t + 1) and there was no event. This
occurs with probability1− λ

∑
j∈S

Pj(S)− γ(y, t+ 1)

 p(y, t+ 1). (3.19)

Third, we could come from state (y− 1, t+ 1) and we have a reservation. This
occurs with probability

λ
∑
j∈S

Pj(S)p(y − 1, t+ 1). (3.20)

Combining Equations (3.18), (3.19), and (3.20) this gives

p(y, t) = p(y + 1, t+ 1)γ(y + 1, t+ 1) + λ
∑
j∈S

Pj(S)p(y − 1, t+ 1)

+

1− λ
∑
j∈S

Pj(S)− γ(y, t+ 1)

 p(y, t+ 1).

3.B Estimating Parameters

3.B.1 Multinomial Logit Model

The multinomial logit model (MNL) is a method to describe a discrete probability distri-
bution, given a set of independent variables. It is commonly used to predict the outcome
of statistical classification problems, such as political elections (Dow & Endersby, 2004,
see for example).

Assume that customers can choose among n products and the no-purchase alterna-
tive. Each product j provides a utility Uj for each customer, i.e., the value of product j to
the customer. The no-purchase alternative provides a utility U0. Each customer chooses
alternative j ∈ N ∪ {0} such that his utility is maximised. The MNL assumes that the
utilities are random variables of the form

Uj = uj + ξj ,

where uj is the expected value of Uj and ξj is a random draw from the Gumbel distribu-
tion2 with location equal to Euler’s constant and scale equal to −1, such that the expected

2The cumulative distribution function of the Gumbel distribution is given by

F (x|µ, β) = e−e−(x−µ)/β
,

where µ is called the location and β is called the scale parameter. The expected value is equal to µ+ γβ,
where γ ≈ 0.5772 is Euler’s constant.
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value is zero. Under these assumptions it can be shown (see Ben-Akiva & Lerman, 1985)
that the choice probabilities are equal to

Pj(S) =
euj∑

i∈S e
ui + eu0

.

The mean utility uj of a product or the no-purchase option depends on k ∈ N different
attributes. The values of the attributes are stored in the k-dimensional vector Zj . The
corresponding weights of each attribute are stored in the k-dimensional vector β. Hence
the mean utility uj for product j is given by

uj = β>Zj .

3.B.2 Complete Knowledge

Suppose that we have complete knowledge on arrivals, purchases and no-purchases, offer
sets, and cancellations. Then we can estimate the parameters in the following way. Define
aλ(t), {aj(t)}j∈N , and a(t) by

aλ(t) =

{
1 arrival at time t,
0 otherwise,

aj(t) =

{
1 product j cancelled at time t,
0 otherwise,

a(t) =

{
1 no arrival or cancellation at time t,
0 otherwise,

= (1− aλ(t))
∏
j∈N

(
1− aj(t)

)
.

The parameters defined above are indicators to specify which event happened in time
period t. Note that exactly one indicator is equal to 1 at time t and that this is in
agreement with the assumption that only one event happens in each time period. In order
to ensure a unique solution we set α = 0 for convenience. Let j(t) be the product that
is purchased at time t under the condition that a customer arrived and j(t) = 0 if we
observed an arrival but no purchase. Then λPtj(t)(0, β, St, Zt) is the probability that j(t)
is purchased at time t, or the probability that a customer arrived and purchased nothing
if j(t) = 0. If product j was cancelled at time t then the probability that this occurs is
γj(xj). If no event took place this occurs with probability 1−λ−

∑
j∈N γj(xj). Let D be

the set of time periods. Then the likelihood function L is given by

L(β, γ, λ|a, x, St, Zt) =

∏
t∈D

[
λPtj(t)(0, β, St, Zt)

]aλ(t) ∏
j∈N

γj(xj)
aj(t) ·

1− λ−
∑
j∈N

γj(xj)

a(t)

.

The log-likelihood function LL is then

LL(β, γ, λ|a, x, St, Zt) = log(L) =
∑
t∈D

[
aλ(t) log

(
Ptj(t)(α, β, St, Zt)

)
+ aλ(t) log(λ)

+
∑
j∈N

aj(t) log
(
γj(xj)

)
+ a(t) log

1− λ−
∑
j∈N

γj(xj)

].
Note that LL is separable in β and (γ, λ). Maximising the separated log-likelihood func-

tions with respect to β and (γ, λ) gives estimates β̂ and (γ̂, λ̂), respectively.
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3.B.3 Incomplete Knowledge: Expectation Maximisation Algorithm

Suppose we can not observe the event that a customer arrives but does not make a
purchase. Then we do not know the values of aλ(t) and a(t). One way to overcome this
problem is to apply the well known expectation maximisation algorithm (see Dempster
et alii, 1977). Define P as the set of time periods where a purchase is observed and Cj the
set of time periods where a cancellation for product j is observed. Then we can rewrite
LL to

LL(β, γ, λ|x, St, Zt) =

∑
t∈P

[
log(λ) + log

(
Ptj(t)(0, β, St, Zt)

)]
+
∑
j∈N

∑
t∈Cj

log
(
γj(xj)

)

+
∑

t/∈P,t/∈Cj

log

1− λ−
∑
j∈N

γj(xj)


+ aλ(t)

[
log(λ) + log

(
Pt0(0, β, St, Zt)

)
− log

1− λ−
∑
j∈N

γj(xj)

].
We know the values for aλ(t) for t ∈ P and t ∈ Cj for all j. However, we do not know the

values for aλ(t) for t /∈ P and t /∈ Cj for all j. If we have estimates β̂, γ̂, and λ̂ we can use
Bayes theorem to calculate âλ(t) (similar to Talluri & van Ryzin, 2004a):

âλ(t) = E[aλ(t)|t /∈ P, t /∈ Cj , β̂, λ̂, γ̂]

= P[aλ(t) = 1|t /∈ P, t /∈ Cj , β̂, λ̂, γ̂]

=
P[t /∈ P, t /∈ Cj |aλ(t) = 1, λ̂, β̂, γ̂] · P[aλ(t) = 1|λ̂, β̂, γ̂]

P [t /∈ P, t /∈ Cj |λ̂, β̂, γ̂]

=
Pt0(0̂, β̂, St, Zt) · λ̂

1− λ̂Pt∗(0̂, β̂, St, Z)−
∑
j∈N γ̂j(xj)

.

(3.21)

With âλ we can approximate a(t) by

â(t) = (1− âλ(t))
∏
j∈N

(
1− aj(t)

)
=

{
0 if a product was cancelled in time period t,
1− âλ(t) otherwise.

Under âλ(t) the expected log-likelihood function is

E[LL|β̂, λ̂, γ̂] =

∑
t∈P

[
log(λ) + log

(
Ptj(t)(β, Z, St)

)]
+
∑
j∈N

∑
t∈Cj

log
(
γj(xj)

)

+
∑

t/∈P,t/∈Cj

log

1− λ−
∑
j∈N

γj(xj)


+ âλ(t)

log(λ) + log
(
Pt0(β, Z, St)

)
− log

1− λ−
∑
j∈N

γj(xj)

 .

(3.22)
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Maximising this function with respect to (β, λ, γ) gives new estimates (β̂, λ̂, γ̂). These
values in turn can be used to find a new estimate âλ(t), etc. The algorithm is summarised
in Algorithm 3.5.

Algorithm 3.5. Expectation-Maximisation

1. Start with initial parameters (λ̂, β̂, γ̂).

2. Expectation Estimate âλ(t) using Equation (3.21).

3. Maximisation Estimate (λ̂, β̂, γ̂) using âλ(t) and Equation (3.22).

4. Go to step 2 unless we hit a stopping criterion.



CHAPTER 4

Single-Leg Choice-Based Revenue Management:
a Robust Optimisation Approach

In practice, uncertainty in demand forecasts arises due to estimation errors and the
stochastic nature of demand (see also Chapter 2). This chapter studies a robust opti-
misation approach to deal with the uncertainty of demand in the single-leg choice-based
revenue management (RM) model from Chapter 3. To this extend, the probability vectors
of general choice models are modelled by φ-divergence uncertainty sets. An important yet
surprising result is that the robust solution method performs relatively better for smaller
inventory than for larger inventory. Moreover, the robust solution method performs 2.5-
3.25% better than the nominal solution when knowledge on cancellations is lacking.

4.1 Introduction

A popular trend in revenue management models is to capture the behaviour of customers
that choose between different available products. The renowned paper by Talluri & van
Ryzin (2004a) combined revenue management models with customer choice models. Many
contributions to the body of literature on customer choice models have been made, e.g.,
better solution methods (Strauss & Talluri, 2012), network models that take into account
multiple night stays/multiple flight legs (Liu & van Ryzin, 2008), and in Chapter 3 the
model was extended to include cancellations, to which the model of this study is closely
related. The solution methods used in these models often assume that the parameters of
the model are known. However, in practice the true parameter values are unknown and
have to be estimated from data. Estimating the parameters of a customer choice model
requires more data than only sales data, which is not always available, so an estimation
error is not unlikely. Newman et alii (2012) provide hotel data and describe the complexity
of acquiring a proper data-set. Estimation errors lead to uncertainty in the parameters
and very likely a misspecified model. Optimising a misspecified model leads to potentially
suboptimal policies and revenue loss. A relatively recent field of optimisation that takes
into account uncertainty in the optimisation procedure is robust optimisation. In this
field, the values of the parameters are assumed to lie in an uncertainty set, rather than to
be known exactly. Robust optimisation methods provide solutions where the worst-case

This chapter is based on Sierag & van der Mei (2016).
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scenario is optimised, providing a trade-off between risk and average reward. See Ben-Tal
et alii (2009) for an introduction of theories on robust optimization.

This chapter studies a robust optimisation approach to single-leg choice-based revenue
management. In this model a single-leg revenue management problem is modelled as a
Markov decision process and solved using dynamic programming. This study provides a
general robust formulation of this model. In each step of the dynamic program a small
maximin problem has to be solved. The minimisation problem can be formulated as a
linear program. The uncertain parameters are probabilities, of which the uncertainty set
is modelled using a φ-divergence measure. Tractable robust counterparts are presented
for this problem. The methodologies that are used are based on Nilim & El Ghaoui
(2005), who provide a robust formulation for general dynamic programming formulations,
and the recent paper by Ben-Tal et alii (2013), who provide a novel formulation for
robust counterparts for probabilities. The main contribution of this study is a tractable
robust formulation for general choice models. Numerical results discussed in Section 4.4
below show that the robust solution method outperforms the nominal solution in many
cases when using estimated parameters. Moreover, the robust solution method gives a
relatively higher improvement in revenue for smaller hotels than for larger hotels. Related
to this chapter is Rusmevichientong & Topaloglu (2012), where a robust formulation is
provided of the multinomial logit model. In contrast to their paper, this chapter focuses
on the estimated probabilities instead of the parameters of the chosen model. This way
the robust solution method can be applied to any choice model, or any estimate of the
choice probabilities.

Other revenue management problems have been solved using robust optimisation. Several
static and dynamic single-leg revenue management problems that do not take into account
customer choice behaviour have been studied. Ball & Queyranne (2009) provide a robust
solution method for the single-leg revenue management problem that does not require
demand information. Robust results for various policy classes are provided. Birbil et
alii (2009) provide robust optimization methods for one static and one dynamic single-
leg revenue management problem. Lan et alii (2008) provide a robust solution method
for the single-leg revenue management problem under independent demand model when
limited information is available on demand. Network revenue management problems have
also been studied in robust optimisation context. Lai & Ng (2005) provide a stochastic
programming solution to a network model for hotels, without using choice models. Perakis
& Roels (2010) describe two robust solution methods for solving the network revenue
management problem that does not take into account customer choice behaviour. One
solution method solves the maximin problem and the other solves the minimax regret
problem. As mentioned before, Rusmevichientong & Topaloglu (2012) provide a study
of robust optimization applied to the assortment problem under the multinomial logit
model. Farias et alii (2013) provide a robust non-parametric estimation method and a
study on selecting the right choice model using sales data.

The remainder of this chapter is organised as follows. In Section 4.2 the single-leg customer
choice model is described. The extension to cancellations is also presented. The model is
reformulated in an equivalent formulation that is more convenient for this study. In Sec-
tion 4.3 the robust counterpart of the nominal model is presented. First the formulation
of the uncertainty sets is given. Then the robust dynamic program is formulated. The
remainder of this section provides tractable reformulations for several φ-divergence mea-
sures. In Section 4.4 numerical results are presented to validate the model. In Section
4.5 some concluding remarks are given. See Appendix 4.A for references to robust linear
optimisation. Moreover, the theory of φ-divergence uncertainty sets is explained, which is
used in the theories of this chapter.



Single-Leg Choice-Based Revenue Management: a Robust Optimisation Approach 61

4.2 Model Description

In this section the set-up of the problem is presented in hotel-context. However, the
general description applies to other areas, such as seats on a flight or tickets for a theatre
performance. Consider a hotel with C identical rooms that wants to sell them in T time
units, 0 being the arrival time. This arrival time is typically an arrival day, where the
rooms for that night are offered for sale T days in advance. Overbooking is allowed up to
Cmax rooms. Each room can be sold using a fare product j, which is a combination of a
room with a price rj and certain conditions, such as the cancellation policy. Assume there
is a finite number of fare products N = {1, . . . , n}. At each moment in time the hotel
manager decides which offer set S ⊂ N of fare products to offer. Potential customers
arrive according to a Poisson process with rate λ > 0. These customers show interest
in the hotel, but their final decision is based on the offer set S displayed. The customer
either buys one of the fare products j ∈ S, with probability Pj(S), or leave and buy
nothing at all, with probability P0(S). Customers are allowed to cancel their reservation,
according to the cancellation policy. Assume that the cancellations of reservations happen
independent from each other. This assumption is intuitively clear: clients are assumed to
arrive independently, so their decision to cancel their reservation is not dependent on the
decisions of other clients. If there are xj reservations for fare product j, then the time to
cancellations follows an exponential distribution with rate γjxj , γj ∈ R+. See Figure 4.1
for an illustration of the model.

λ
S

Control

...

Product j
Pj(S)

...
P0(S)

γjxj

Figure 4.1: Illustration of the customer choice cancellation model, see also Chapter 3. Per
arrival day the arrival process is Poisson distributed with parameter λ. The manager controls
the offer set S. Under this offer set an arriving customer buys product j ∈ S with probability
Pj(S), and with probability P0(S) the customer buys nothing. Finally, cancellations of
product j follow an exponential distribution with parameter γj .

The problem for the manager is to decide which offer set S ⊂ N to offer to maximise
expected revenue. To solve this problem, the continuous time Markov decision process is
discretised and set up as a dynamic programming formulation. The state space of this
formulation keeps track of the number of reservations per product, and hence it grows
exponentially with the number of products. In Chapter 3 a solution method was pro-
posed that approximates the optimal solution by collapsing the state space (Algorithm
3.2). This is the only available tractable solution method that shows promising re-
sults. Therefore, this algorithm, which is called nominal method henceforth, is used as a
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benchmark and functions as a base for the robust solution method that is to follow. An-
other approximation described in Chapter 3 considers the model without cancellations. It
is based on Talluri & van Ryzin (2004a), and is denoted by Talluri and van Ryzin (TvR)
method henceforth. The TvR method is also included in the numerical studies.

The collapsed dynamic program only keeps track of the total number of reservations,
leading to the state space {0, 1, . . . , Cmax}. Time is divided into T time periods, where
the length of the intervals is such that the probability that more than one event occurs is
very small. Therefore it is assumed that only one event occurs per time period, where an
event is either an arrival, a cancellation, or neither arrival nor cancellation. Denote with
λ the probability that a customer arrives in a time period; and γy the probability that
a product is cancelled in state y, γ ∈ R. The single cancellation rate can be estimated
from the individual cancellation rates, for example by the average, as is suggested in
Chapter 3. The probability that no purchase occurs in a time period equals the sum of
the probability that neither an arrival and nor a cancellation occurs, and the probability
that an arrival occurs but the arriving customer makes no purchase. This probability is
equal to

(1− λ− γy) + λP0(S) = 1− λ
∑
j∈S

Pj(S)− γy.

In each time period the decision needs to be made which set S to offer. Note that time has
to be scaled such that λ+ γCmax ≤ 1, otherwise the probabilities are not well defined.

Let Vt(y) be the maximal expected revenue from time t to the arrival day in state y. Define
∆Hj(t) by

∆Hj(t) :=

{
γjcj(t) + (1− γj)∆Hj(t− 1) if t > 1,

0 if t = 1,

for all j ∈ N . The Bellman equation corresponding to the discretised Markov chain is

Vt(y) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
[
rj −∆Hj(t) + Vt−1(y + 1)

]
if 0 < y < Cmax,

+γyVt−1(y − 1)

+

1− λ
∑
j∈S

Pj(S)− γy

Vt−1(y)

}

γCmaxVt−1(Cmax − 1) if y = Cmax,

+ (1− γCmax)Vt−1(Cmax)

max
S⊂N

{
λ
∑
j∈S

Pj(S)
[
rj −∆Hj(t) + Vt−1(1)

]
if y = 0.

+

1− λ
∑
j∈S

Pj(S)

Vt−1(0)

}

(4.1)

Below a reformulation of Equation (4.1) is given, for convenience later on in the chap-
ter. Note that λ, Pj(S) and γ are probabilities. Define P̃j(S) := λPj(S) for all j ∈ N
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(Pj(S) := 0 if j /∈ S), P̃n+1(S) := γy, and P̃0(S) = 1 −
∑n+1
j=1 P̃j(S). Also define

r̃j := rj −∆Hj(t). Then Equation (4.1) can be rewritten as

Vt(y) =

max
S⊂N

{∑
j∈S

P̃j(S)
[
r̃j + Vt−1(y + 1)

]
+ P̃n+1(S)Vt−1(y − 1) + P̃0(S)Vt−1(y)

}
.

(4.2)

4.3 Robust Reformulation

Finding accurate estimates for the problem at hand is challenging. Commonly used max-
imum likelihood estimation methods can be found in Newman et alii (2014), Sierag et
alii (2015), or Talluri & van Ryzin (2004a). Estimating parameters from data often lead
to estimation errors, as is the case with the mentioned methods. Incorrect estimates may
lead to suboptimal decisions, and therefore suboptimal revenue. One way to deal with
estimation errors in the optimisation process is robust optimisation. In this field, the val-
ues of the parameters are not known exactly, but are assumed to lie in an uncertainty
set. The worst case scenario is optimised under the uncertainty set. The goal is to im-
prove performance by using the robust solution method rather than the nominal solution
method. In Appendix 4.A a brief introduction to robust linear optimisation is given.

Recently Ben-Tal et alii (2013) have provided tractable robust counterpart formulations
for uncertainty sets that are based on φ-divergence measures. These uncertainty sets
are used to model uncertainty in probabilities. The dynamic program in Equation (4.2)
uses probabilities consisting of estimated parameters to find an optimal solution. The
derivation of tractable robust counterparts for (4.2) under φ-divergence uncertainty sets
is described below.

4.3.1 Reformulation

The uncertainty in the adjusted purchase probabilities P̃j(S) is assumed to deviate
from the nominal value p̄ according to a φ-divergence measure. Consider a function
φ : R → R that is twice differentiable on [0,∞), convex for t ≥ 0, φ(1) = 0,
0φ(1/0) := a limt→∞ φ(t)/t for a > 0, and 0φ(0/0) := 0. The φ-divergence measure
Iφ(p, q) between two vectors p and q, p, q ∈ Rn, is defined as

Iφ(p, q) :=

n∑
i=1

qiφ(pi/qi).

A φ-divergence measure is a metric for the distance between two (probability) vectors
according to the divergence function φ. A popular choice for φ is the Cressie-Read diver-
gence:

φθ(t) =
1− θ + θt− tθ

θ(1− θ)
, θ 6= 0, 1, t ≥ 0.

The φ-divergence measure Iφ(p, q) is then given by

Iφ(p, q) =
1

θ(1− θ)

(
1−

∑
i

pθi q
1−θ
i

)
.



64 Revenue Management in the Hotel Industry

In Section 4.3.2 several other φ-divergence measures are discussed.

In Ben-Tal et alii (2013) it is shown that the robust counterpart of a linear constraint
with φ-divergence uncertainty can be written in terms of the conjugate φ∗ : R → R ∪∞
of φ, which is defined as follows:

φ∗(s) := sup
t≥0
{st− φ(t)}. (4.3)

Let X be a one-dimensional random variable with finite support {1, . . . ,m}. Denote
p = (p1, . . . , pm) as the probability vector of X, such that pi = P(X = i). Let p̂0

be the maximum likelihood estimator of p. From Ben-Tal et alii (2013) the uncertainty
region for p is given by

{p ∈ Rm |Iφ(p, p̂0) ≤ ρ} ,

with

ρ :=
φ
′′
(1)

N
χ2
m,1−α,

with N the sample size, α the confidence level, and χ2
m,1−α is the 1 − α percentile of

the χ2
m-distribution. Then the uncertainty set ZS for the purchase probabilities P̃j(S) is

given by

ZS =
{
p ∈ Rn+2 |p ≥ 0, Cp ≤ d, Iφ(p, p̄) ≤ ρ

}
,

with

C•j =

{
(1,−1) if j ∈ S ∪ {0, n+ 1},
(0, 0) otherwise,

d = (1,−1).

Nilim & El Ghaoui (2005) provide a robust formulation of dynamic programming with
uncertainty in the probabilities. From their analysis it follows that the nominal dynamic
program (4.1) under uncertainty sets ZS can be solved using the following recursive
formula:

Vt(y) = max
S⊂N

Φ(S), (4.4)

with

Φ(S) = min

∑
j∈S

pj [r̃j + Vt−1(y + 1)] + pn+1Vt−1(y − 1) + p0Vt−1(y)

∣∣∣∣∣∣ p ∈ ZS
 . (4.5)

The uncertainty problems Φ(S) can be solved for each S independently. When Φ(S) is
known for all S, then optimisation problem (4.4) becomes a maximisation problem over a
finite set of integers. The challenge is to evaluate Φ(S). For this purpose, it is notationally
convenient to move the formula in the objective of (4.5) to the constraints, by setting the
objective to minimise to t ∈ R and add the constraint∑

j∈S
pj [r̃j + Vt−1(y + 1)] + pn+1Vt−1(y − 1) + p0Vt−1(y) ≤ t.
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This leads to the following equivalent optimisation problem:

min

t ∈ R

∣∣∣∣∣∣
∑
j∈S

pj [r̃j + Vt−1(y + 1)] + pn+1Vt−1(y − 1) + p0Vt−1(y)− t ≤ 0,

∀p ∈ ZS

 . (4.6)

Define x ∈ R2, a ∈ R2, and B ∈ R2×(n+2) as follows:

x = (t, x0),

a = (−1, 0),

B =

(
0 0 · · · 0 0

Vt−1(y) r̃1 + Vt−1(y + 1) · · · r̃n + Vt−1(y + 1) Vt−1(y − 1)

)
.

Then the constraint can be rewritten to{
0 ≥ (a+Bp)>x, ∀p ∈ ZS ,
x0 = 1.

The following property from Ben-Tal et alii (2013) can now be applied.

Property 4.1. Theorem 4.1 in Ben-Tal et alii (2013)

Consider the linear constraint

(a+Bp)>x ≤ b, p ∈ Z, (4.7)

where x ∈ Rn is the vector to be optimised, a ∈ Rn, B ∈ Rn×m and b ∈ Rn
are given parameters, p ∈ Rm is the uncertain parameter, and

Z = {p ∈ Rm |p ≥ 0, Cp ≤ d, Iφ(p, q) ≤ ρ} ,

is the uncertainty region of p with q ∈ Rm+ , ρ > 0, d ∈ Rk, and
C ∈ Rk×m. Then a vector x ∈ Rn satisfies (4.7) if and only if there exist
η ∈ Rk and ξ ∈ R such that (x, η, ξ) satisfiesa

>x+ d>η + ρξ + ξ
∑
i

qiφ
∗
(
B>i x− C>i η

ξ

)
≤ b,

η ≥ 0, ξ ≥ 0,

where Bi and Ci are the i-th columns of B and C, respectively, and φ∗ is the
conjugate function of φ.

The robust counterpart of (4.6) is then given by

a>x+ d>η + ρP ξ + ξ

n∑
i=0

p̄iφ
∗
(
B>i x− C>i η

ξ

)
≤ 0,

η ≥ 0,

ξ ≥ 0.

(4.8)



66 Revenue Management in the Hotel Industry

The robust counterparts for the boundaries (last two equations of (4.1)) are also given
by Equation (4.8), where the parameters are given by

x = (t, x0),

a = (−1, 0),

B =

(
0 0

Vt−1(y) Vt−1(y − 1)

)
,

p(p0, pn+1),

and

x = (t, x0),

a = (−1, 0),

B =

(
0 0 · · · 0

Vt−1(y) r̃1 + Vt−1(y + 1) · · · r̃n + Vt−1(y + 1)

)
,

p = (p0, p1, . . . , pn),

respectively.

A tractable reformulation of the robust counterpart under the Cressie-Read divergence is
given by (Ben-Tal et alii, 2013, see appendix of)

a>x+ η1 − η2 + ξρP + ξ
θ

∑
i p̄i

(
(yiξ )

θ
θ−1 − 1

)
≤ 0

yi = ξ − (1− θ)(B>i x− η1 + η2), i = 1, . . . ,m,

η ≥ 0, ξ ≥ 0.

This problem can solved using conic quadratic programming (CQP). Tractable robust
counterparts for other popular φ-divergence measures can be found in Ben-Tal et alii
(2013).

The parameters of the uncertainty sets need to be estimated from data. For some pa-
rameters the estimation procedure is trivial or already described. The parameter p̄ fol-
lows directly from the maximum likelihood estimates, for example from the estimation
procedure described in Section 3.4, and Newman et alii (2014) or Talluri & van Ryzin
(2004a). The parameter ρP is defined by Equation (4.3).

4.3.2 Discussion of Selected φ-Divergence Measures

In this section, tractable reformulations of (4.8) are provided for popular choices of φ (Ben-
Tal et alii, 2013). Each measure is appropriate in a different situation, and a motivation
is given when to select which measure.

− Kullback-Leibler The Kullback-Leibler measure is

Iφkl(p, p̄) =

m∑
i=1

pi log(pi/p̄i).

This asymmetric measure punishes upward deviation of pi from p̄i and rewards
downward deviation. This measure is appropriate when the parameters are more
likely to be smaller than the estimated parameters.
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− Burg Entropy The Burg entropy measure is given by

Iφb(p, p̄) =

m∑
i=1

p̄i log(pi/p̄i).

Also for this asymmetric measure it holds that it punishes upward deviation of pi
from p̄i and rewards downward deviation. The amplification of the punishment or
reward is constant and dependent on the estimation of the nominal vector p̄. The
unfortunate property of this measure is that any value of pi is feasible: pi can be
approximately close to zero, since it has a negative contribution to Iφb(p, p̄); and pi
can be greater than p̄i, up to 1, as long as pj is small enough, for some j 6= i.

− J-divergence The J-divergence measure leads to a φ-divergence of

Iφj (p, p̄) =

m∑
i=1

(pi − p̄i) log(pi/p̄i).

This asymmetric measure punishes both upward and downward deviation of pi from
p̄i. The measure is similar to Kullback-Leibler and Burg Entropy, yet the factor
pi − p̄i ensures that all deviation is punished and none rewarded. Larger deviation
is punished heavier than small deviations.

− χ2-distance The φ-divergence of the χ2-distance measure is given by

Iφc(p, p̄) =

m∑
i=1

(pi − p̄i)2

pi
.

This measure punishes larger deviations more heavily than smaller deviations. How-
ever, upward deviation is punished less than downward deviation, because of the
1/pi term. The punishment is relative to the quantity of the vector p.

− Modified χ2-distance The φ-divergence of the modified χ2-distance is given by

Iφmc(p, p̄) =

m∑
i=1

(pi − p̄i)2

p̄i
.

This measure also punishes larger deviations more heavily than smaller devia-
tions. However, in this case upward deviation is punished equally strongly as down-
ward deviation because of the p̄i. The punishment is relative to the quantity of the
nominal value p̄i.

− Hellinger distance The φ-divergence of the Hellinger distance is given by

Iφh(p, p̄) =

m∑
i=1

(
√
pi −

√
p̄i)

2.

This is the l2-norm applied to the vector (
√
p1, . . . ,

√
pn), which is a unit vector

under the l2-norm. This measure is more sensitive to changes in smaller probabilities
than larger probabilities.

− χ-divergence of order θ > 1 The φ-divergence of the χ-distance of order θ > 1 is
given by

Iφca(p, p̄) =

m∑
i=1

p̄i|1− pi/p̄i|θ.
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This measure punishes larger deviations more heavily than small deviations. How
severe the deviations are punished depends on the parameter θ. Larger θ punish
deviations more than smaller θ.

− Variation distance The φ-divergence of the variation distance is given by

Iφv (p, p̄) =

m∑
i=1

|pi − p̄i|.

This is the l1 norm. Larger deviation is punished linearly more than smaller devia-
tions.

− Cressie and Read The φ-divergence for the Cressie and Read measure with pa-
rameter θ is given by

Iφh(p, p̄) =
1

θ(1− θ)
(1−

m∑
i=1

pθi p̄
1−θ
i ).

This measure gives larger punishment to larger deviations if θ is large. For small θ
the effect of large deviations is less severe.

4.4 Numerical Results

In this section numerical results are provided to validate the robust solution method
for the single-leg revenue management model with cancellations and overbooking. The
benchmark policy is given by the nominal solution method described in Section 4.2.

The model parameters that are used are based on Simulation Example 2 in Talluri &
van Ryzin (2004a) and the example used in the numerical results in Section 3.5 of this
dissertation. These parameters are realistic and based on observations in practice. Let
n = 10 be the number of products sold with corresponding price vector

r = (240, 220, 190, 160, 120, 112, 96, 80, 74, 70).

Demand, cancellation rates, and purchase probabilities are independent from the time
period t. To allow the study of the effect of high volume in demand and low volume in
demand the load factor l is introduced. In our studies the values l ∈ {0.6, 0.8, 1, 1.2, 1.4}
are used. Demand λ per time unit is then defined as

λ(C, l, T ) =
Cl

T
.

A low value of l implies a low demand relative to the capacity C and a high value of l
implies a high demand relative to the capacity C.

Purchase probabilities are modelled by the multinomial logit (MNL) model. The only
attribute that is considered is price, but it is assumed that there exist high price-
sensitive and low price-sensitive customers which have different parameters βH = −0.005
and βL = −0.0015, respectively (as in Talluri & van Ryzin (2004a), and Section 3.5
above). The no-purchase parameter is set to α = 0 such that the MNL model is the
same as in Talluri & van Ryzin (2004a) and Section 3.5. Overbooking is allowed up to
20% of the total capacity C (this is more for computational reasons: the policies found
will almost surely not open any product categories for sale as the overbooking is close to
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20%). Cancellation rates are assumed linear and the parameters γ ∈ Rn depend on l and
T in the following way:

γ = (18/25, 8/25, 14/25, 7/25, 1/5, 9/25, 4/25, 2/25, 1/125, 1/25)
l

T
.

To evaluate the performance of both robust and nominal policies for a particular model
instance, 1000 data sets are simulated. From each dataset the parameters of the model
are estimated, which are used by both solution methods. Simulation is used to estimate
the revenue corresponding to a policy. The estimation errors are between 0.1% and 0.4%.

Hotel size

First the performances of the robust solution method for different hotel sizes are com-
pared. Moreover, different φ-divergences are applied. The booking horizon is T = 1000
time units and the sample size is 100 arrival days. Table 4.1 shows the results.

Hotel size
10 20 50 100 200

φ-divergence metric Rev % Rev % Rev % Rev % Rev %
Nominal 1765 3549 8908 16711 29776
TvR 1749 -0.91 3470 -2.23 8235 -7.56 15209 -8.99 26355 -11.49
Kullback-Leibler 1791 1.47 3620 2.00 8948 0.45 16793 0.49 29781 0.02
Burg Entropy 1791 1.47 3621 2.03 8945 0.42 16794 0.50 29779 0.01
J-divergence 1791 1.47 3621 2.03 8945 0.42 16792 0.48 29778 0.01
χ2-distance 1792 1.53 3619 1.97 8946 0.43 16793 0.49 29784 0.03
Modified χ2-distance 1791 1.47 3621 2.03 8946 0.43 16796 0.51 29780 0.01
Hellinger distance 1791 1.47 3620 2.00 8945 0.42 16794 0.50 29777 0.00
χ-div. of order θ = 0.5 1792 1.53 3621 2.03 8946 0.43 16793 0.49 29781 0.02
Variation distance 1791 1.47 3619 1.97 8947 0.44 16795 0.50 29783 0.02
Cressie-Read 1791 1.47 3620 2.00 8946 0.43 16790 0.47 29782 0.02

Table 4.1: Performance of nominal and robust solution methods for various hotel sizes.

The results show that the robust solution methods perform better compared to the nom-
inal solution method for small hotels. For larger hotels the difference is smaller. This
might be the case because either the nominal solution performs better for larger hotels,
or the robust solution methods perform worse for larger hotels. These results suggest that
smaller hotels would relatively benefit more from using a robust solution method than
larger hotels. This is an important observation, since most of the hotels are small and
medium enterprises and have a relatively small number of rooms.

The results show no significant difference in performance between the robust solution
methods. Using any robust solution method seems better than using none. For a fixed hotel
size the divergences do not show much difference. Any difference might even be a caused
by the small estimation errors. Also, whenever a divergence shows better performance for
one hotel size, another divergence performs better for another hotel size. For example, for
C = 10 the χ2-divergence performs best, but for C = 20 the divergence performs worst.

Note that the TvR approximation does not perform well, and neither does it in the exam-
ples that follow. Also, no significant difference in performance of φ-divergences was found
in the next examples. For convenience only the results of the Cressie-Read divergence are
compared against the nominal method, and the TvR method is left out.
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Load factor

The load factor influences the performance of the estimation method (see Section 3.5
above). Therefore the robust solution method might perform different under different load
factors. The parameters are set to C = 20 and C = 100 rooms, T = 100 time periods,
and the load factors that are used are {0.6, 0.8, 1, 1.2, 1.4}. The results are presented in
Table 4.2.

C = 20 C = 100
Load factor Nominal Robust % Nominal Robust %

0.6 1934 1936 0.09 9107 9106 -0.02
0.8 2539 2553 0.56 11849 11853 0.03
1.0 3082 3125 1.39 14388 14443 0.38
1.2 3546 3619 2.03 16705 16781 0.46
1.4 3966 4039 1.82 18911 18982 0.37

Table 4.2: Performance of nominal and robust solution methods for various load factors.

The results show that under a small load factor the performance of the nominal solution
and the robust solution are similar, while for larger load factors the robust solution
outperforms the nominal solution. In practice, this means that the robust solution is
preferred in popular areas or in high season, since it leads to significantly higher profits,
while outside high season or at less popular locations the robust solution does not lead
to higher profits.

Sample size

Now the behaviour of the solution methods according to different sample sizes is con-
sidered. One sample consists of the data collected for one arrival day. The uncertainty
set parameter ρ is evaluated accordingly. The size of the hotel is C = 20 rooms and the
booking horizon is T = 100 time periods.

C = 20 C = 100
Sample size Nominal Robust % Nominal Robust %

1 3434 3473 1.12 15510 15536 0.17
2 3286 3323 1.12 15472 15512 0.26
5 3482 3541 1.69 16442 16496 0.33

10 3513 3576 1.77 16646 16705 0.35
20 3542 3612 1.98 16665 16729 0.38
50 3545 3616 2.01 16690 16760 0.42

100 3546 3618 2.03 16708 16777 0.41

Table 4.3: Performance of nominal and robust solution methods for a hotels of size C = 20
and C = 100 and different sample sizes.

In Table 4.3 the performance of the nominal and robust solution methods is provided. The
results show that the average performance of the robust solution method outperforms the
nominal solution method by 1−2% for C = 20, increasing as the sample size increases. For
C = 100 the performance is lower, up to 0.42%.

Unknown cancellation behaviour

The robust solution method can be beneficial when the cancellation behaviour is not
known. When the cancellation parameter is equal to zero, the robust solution method can
be used using this input parameter. The robust solution method then takes into account
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an uncertainty around the zero vector, which may lead to an improved result. This has
been applied as follows: the hotel size is C = 20 or C = 100 rooms, the booking horizon
is T = 100 time periods, and the cancellation rate parameter is set to 0. The results are
given in Table 4.4.

C = 20 C = 100
Sample size Nominal Robust % Nominal Robust %

1 3458 3544 2.48 15176 15651 3.13
2 3408 3484 2.22 15048 15500 3.00
5 3440 3524 2.44 15176 15660 3.19

10 3430 3515 2.47 15148 15619 3.10
20 3464 3559 2.74 15185 15678 3.25
50 3466 3559 2.70 15198 15699 3.30

100 3468 3561 2.68 15205 15709 3.31

Table 4.4: Performance of nominal and robust solution methods for various hotel sizes.

The results show that the average performance is increased by about 2.5% for C = 20,
while for C = 100 the performance even increased by about 3.25%. This strongly suggests
that the robust solution method can successfully be applied when no information about
cancellation behaviour is known. This is an important observation since knowledge on
cancellations is not always available in practice.

Number of products

The performance of the solution methods may be influenced by the number of products
n. The next example shows the performance under a different number of products. The
hotel size is C = 20 or C = 100 rooms, the load factor is l = 1.2, and the booking horizon
is T = 100 time periods. The results are presented in Table 4.5.

C = 20 C = 100
Number of products Nominal Robust % Nominal Robust %

2 3472 3529 1.65 15943 15942 -0.01
3 3558 3628 1.97 16615 16684 0.41
4 3549 3620 2.01 16708 16776 0.40
5 3547 3621 2.08 16706 16778 0.43
6 3548 3619 1.99 16709 16779 0.42
7 3548 3620 2.03 16707 16777 0.42
8 3550 3622 2.04 16709 16778 0.41
9 3546 3621 2.12 16709 16781 0.43

10 3546 3619 2.03 16707 16774 0.40

Table 4.5: Performance of nominal and robust solution methods for different number of
products.

The results suggest that the number of products has only a minor impact on the perfor-
mance of the robust solution method. The robust solution method performs on average
1.65-2.12% better for C = 20, and 0.4% for C = 100. The results show highly robust
revenues against different number of products, which is preferred.

4.5 Concluding Remarks

Estimating parameters of a revenue management model that takes into account customer
choice behaviour is likely to lead to estimation errors. One method to improve performance
is using robust optimisation to take into account the estimation error. In this chapter a
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robust solution method is described for the customer choice cancellation model introduced
in Chapter 3.

The dynamic programming formulation is converted into a robust dynamic program. The
uncertain parameters are modelled using φ-divergence uncertainty sets. In the dynamic
program small minimisation problems containing the uncertain parameters have to be
solved. Novel robust optimisation methodologies from Ben-Tal et alii (2013) lead to
tractable solutions for several φ-divergence measures.

In the numerical studies it is shown that the robust solution method performs better for
smaller hotels than for larger hotels. This can be explained by the results of Section 2.4,
where it is shown that demand uncertainty is relatively higher for smaller hotels compared
to larger hotels. As a consequence, the robust solution method is preferred for small and
medium enterprise hotels, to which most hotels belong. Also, promising results are shown
when cancellation behaviour is not known. The robust solution method outperforms the
nominal solution method by up to 2% when using estimated parameters. The performance
also shows to be robust under different number of products. The fact that the robust
solution method is tractable and provides good results make it attractive for application
in practice.

The results in this chapter can serve as a foundation for several topics further re-
search. First, the methodology of this chapter can be extended to network revenue man-
agement models that use choice models. The effects of parameter estimation errors in these
network models can be studied and solved using robust optimisation. Solving network
problems is not straightforward, so an intense study is necessary. Second, an extensive
study of the performance of different φ-divergence measures under different circumstances
can provide promising insights. Each φ-divergence measure includes and excludes differ-
ent distances from the estimated parameters, which may give insight to which measure is
preferred in which situation.

4.A Introduction to Robust Linear Optimisation and φ-
Divergence Uncertainty Sets

Consider a problem that can be modelled as a linear program:

min
{
c>x |Ax ≤ b

}
,

with c ∈ Rn the cost vector, x ∈ Rn the vector of decision variables, A ∈ Rm×n and
b ∈ Rm. The robust counterpart is given by

min
{
c>x |Ax ≤ b, A ∈ Z

}
,

with c ∈ Rn the cost vector, x ∈ Rn the vector of decision variables, A ∈ Rm×n the
uncertain parameters in uncertainty set Z ⊂ Rm×n and b ∈ Rm a constant vector. Ben-
Tal et alii (2009) show that without loss of generality it may be assumed that only
uncertainty in A exists, and not in the objective c or the right-hand-side b. Furthermore,
Ben-Tal et alii (2009) show that the uncertainty can be approached constraint-wise, which
is of the form

(a+Bζ)>x ≤ b, ∀ζ ∈ Z,

with the nominal value a ∈ Rn constant, B ∈ Rn×m constant, b ∈ R constant, ζ ∈ Rm
uncertain, and Z the uncertainty region for ζ.

Tractable formulations of the robust counterpart for several standard uncertainty regions
are provided in Ben-Tal et alii (2009).



CHAPTER 5

Pricing-Based Revenue Management
for Flexible Products on a Network

This chapter proposes and analyses a pricing-based revenue management (RM) model
that allows flexible products on a network, with a non-trivial extension to group reserva-
tions. Under stochastic demand the problem can be solved using dynamic programming,
though it suffers from the curse of dimensionality. The solution under deterministic de-
mand gives an upper bound on the stochastic problem, and serves as a basis for two
heuristics, which are asymptotically optimal. Numerical studies, based on a problem in-
stance from practice, show that the heuristics perform well, even under uncertainty in
demand. Moreover, neglecting flexible products can lead to substantial revenue loss.

5.1 Introduction

Traditionally in RM, products are a combination of resources, e.g., a stay at a hotel
(product) for two nights (resources). A recent development in constructing products is
the concept of flexible products (Gallego et alii, 2004; Gönsch et alii, 2014; Mang et alii,
2012; Petrick et alii, 2010, 2012). In line with Gallego & Phillips (2004), a flexible product
is a set of alternatives offered by a firm such that the customer is assigned to one of
the alternatives at a later point in time. Offering flexible products, alongside traditional
specific products, can achieve better price discrimination and potentially increase revenue
(Gallego et alii, 2004; Gallego & Phillips, 2004; Mang et alii, 2012). For example, an air-
line serving an origin-destination pair with two flights a day could offer a flexible product
on those two flights at a discounted price, alongside the specific products per flight. The
airline will allocate customers that purchased flexible products to one of the flights shortly
before departure in a balanced way, such that capacity is used more efficiently and new
client segments can be reached without complete cannibalisation. Therefore, flexible prod-
ucts benefit both clients and company: more clients are able to purchase their desired
products, and the company profits from better capacity utilisation and higher revenues.

Current literature on flexible products focusses on quantity-based RM (Gallego et alii,
2004; Gönsch et alii, 2014; Mang et alii, 2012; Petrick et alii, 2010, 2012), where resource

This chapter is based on Sierag (2016b).
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capacities are optimally allocated over different classes of demand. This is typical for
industries like hotels, airlines, and car rental companies, where it is relatively easy to
remove products from the shelve in order to prevent sales and protect inventory for
more profitable future sales. However, in many other industries, like retail, digital and
TV advertising, and fast moving consumer goods (FMCG), it is not easy or common to
remove products from the shelve. In this case, demand is matched with capacity through
dynamic pricing rather than quantity-based RM. The mentioned industries are especially
suitable for flexible products, since products can easily be replaced by one another. In
particular, the digital and TV advertising industries, with 2014 global market volumes
of US $146.6 and $189.4 billion, respectively, and growing (McKinsey&Company, 2015),
sell their impressions in the form of flexible products. In order to use quantity-based
methodologies and optimisation methods to solve dynamic pricing problems, one has to
increase the number of products to approximate the continuity of the price range to the
point that the problem unfortunately becomes highly intractable. Therefore, the quantity-
based methods on flexible products in current literature are not sufficient for solving such
dynamic pricing RM problems and an analysis of a pricing-based approach to flexible
products is essential.

This study proposes and analyses a pricing-based RM model with capacity constraints that
allows flexible products on a network. In addition, the model allows for group bookings (or
bulk purchases), where a single customer is allowed to purchase more than one product
at a time. Buying more than one product at once is a common phenomenon in retailing,
online advertising, and FMCG. Due to the fact that flexible products are allocated to
specific products at some point in time, the modelling of group reservations of flexible
products differs from traditional group reservations for specific products. A stochastic
model with multiple time periods is proposed that entails these characteristics, where
demand is Poisson driven and time dependent. A dynamic programming formulation
is given to solve the problem, though it suffers from the curse of dimensionality. The
deterministic variant of the problem is tractable and provides an upper bound on the
stochastic problem. Also, the deterministic pricing strategy serves as a basis for two
asymptotically optimal heuristics.

This study builds upon two main research areas. The first area is pricing-based RM. Of
particular interest to this study is the excellent study on network RM pricing by Gallego
& van Ryzin (1997). The authors propose two heuristics to solve the intractable pric-
ing model, on which the heuristics of this study are based. Improved solution methods
that deal with the intractability of network models can be found in Maglaras & Meiss-
ner (2006), who introduced an action-space reduction algorithm, and, more recently,
Zhang & Lu (2013), where a resource decomposition approach is considered. See Bi-
tran & Caldentey (2003) and Soon (2011) for an overview of relevant pricing literature.
The second research area studies flexible products. The concept of flexible products was
introduced in the seminal paper by Gallego et alii (2004), who argue in favour of its appli-
cability in many industries and analyse a model with one flexible product on two specific
products. Subsequently Gallego et alii (2004) proposed and analysed a quantity-based
network RM model with flexible products, together with an extension to choice-based
demand. More recently, Petrick et alii (2010) provide an overview of different quantity-
based RM methods; Petrick et alii (2012) study the effect of flexible products on revenue
when demand is uncertain due to forecast errors; and Gönsch et alii (2014) provide an
improved DLP approach to the flexible network problem. The empirical study by Mang
et alii (2012) shows by means of a large field study of a low-cost airline that flexible prod-
ucts can increase profit by 5%. Related to flexible products is the study of probabilistic
goods by Fay & Xie (2008), where capacity is allocated to the product immediately after
purchase, rather than at a later moment in time.
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The remainder of this chapter is organised as follows. First, in Section 5.2, the pricing-
based network RM model under stochastic and deterministic demand is introduced. Also,
the extension to group bookings is presented, as well as an upper bound on the stochastic
problem. Second, Section 5.3 proposes two asymptotically optimal heuristics based on the
deterministic problem to solve the intractable stochastic problem. Third, Section 5.4 pro-
vides numerical results the effects of flexible products, the performance of the heuristics,
and the effects of uncertainty in demand on revenue. Finally, Section 5.5 concludes the
chapter.

5.2 Model Description

In this section both a deterministic and a stochastic model for pricing flexible products on
a network are introduced. The curse of dimensionality prevents the problem to be solved
exactly. The solution to the deterministic problem is an upper bound on the stochastic
solution, and is used in the heuristics presented in Section 5.3. Finally, an extension to a
non-trivial model for group reservations is introduced.

5.2.1 Stochastic Model

Consider a firm that has m types of perishable resources available with capacity vector
C ∈ Nm, which can only be used in T time units. The firms sells the resources by offering
n specific products N = {1, . . . , n} and f flexible products F = {1, . . . , f}, which consume
one or more resources. The resource consumption for the specific products is described by
the incidence matrix A = (aij) ∈ Rm×n, where aij = 1 if product j consumes resource i. A
flexible product k ∈ F consists of a set of alternatives Fk ⊂ N of specific products. At time
T each customer that purchased a flexible product k is assigned to one of the fk = |Fk|
alternatives j ∈ Fk.

The booking horizon is divided into T time periods in which products are offered. Demand
for products in time period t is Poisson distributed with parameter λj(p, t) for specific

products j ∈ N and parameter γk(p, t) for flexible products k ∈ F , where p ∈ Rn+f
+ is the

price vector of the products. The demand functions λ(p, t) and γ(p, t) satisfy the following
regularity conditions:

1. The demand function (λ(p, t), γ(p, t)) has an inverse p(λ, γ, t). Hence the demand
can and will function as the decision variables.

2. The revenue or reward at time t defined by r(λ, γ, t) = (λ, γ)>p(λ, γ, t) is continuous,
bounded, and concave.

3. The following asymptotic results hold for all finite (λ, γ) and for all j ∈ N and
k ∈ F :

lim
(λ,γ) : λj→0

λjpj(λ, γ, t) = 0,

lim
(λ,γ) : γk→0

γkpk(λ, γ, t) = 0.

4. The following ensures the revenue is bounded:

sup
j,t

[arg max
(λ,γ) : λj(t)

λj(t)pj(λ, γ, t)] <∞,

sup
k,t

[arg max
(λ,γ) : γk(t)

γk(t)pk(λ, γ, t)] <∞.
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5. There exist null prices p∞j (t) and p∞k (t) such that:

(a) if {pi} is a sequence for which pij → p∞j , then limi→∞ λj(p
i, t) = 0,

(b) if {pi} is a sequence for which pik → p∞k , then limi→∞ γk(pi, t) = 0.

A function that satisfies these conditions is called regular.

Let v ∈ N be the number of bookings for specific products. Let s = C − Av be the
capacity not yet committed. Let y ∈ Rf be the number of accepted requests for flexible
products. Define (s, y) as the state of the network. Then (s, y) is feasible if and only if it
satisfies the following system of linear (in)equalities

s ≥ 0,

f∑
k=1

Bkzk ≤ s,

yk − 1>zk = 0, k = 1, . . . , f,

(5.1)

where Bk is the submatrix of A containing columns corresponding to the products in Fk,
and zk ∈ Zfk represents the allocation of flexible products to specific products. Define
B = (B1 · · ·Bf ) and z = (z1, . . . , zf ). Define U ∈ Rf×|z| by uij = 1 if j corresponds to
flexible product i. Let N(t) and M(t) be the random Poisson distributed demand under
λ(t) and γ(t). The objective is to maximise the expected revenue:

E

[
T∑
t=1

r(t, λ, γ)

]
=E

[
T∑
t=1

(
N(t),M(t)

)>
p(t, λ, γ)

]

=E

 T∑
t=1

[∑
j∈N

Nj(t)pj(t, λ, γ) +
∑
k∈F

Mk(t)pk(t, λ, γ)

] . (5.2)

Demand has to satisfy the feasibility constraints (5.1). The state (s, y) has to be feasible
in each time period, but the flexible products can be distributed over their corresponding
specific products at the end of the booking horizon. Therefore, it is not necessary to use
a dummy variable vector z for each time period, but only one for the whole system. This
leads to the following feasibility constraints:

T∑
t=1

AN(t, λ(t), γ(t)) +Bz ≤ C,

T∑
t=1

M(t, λ(t), γ(t))− Uz = 0.

(5.3)

The stochastic optimisation problem is formulated as:

max


E

[
T∑
t=1

(
N(t),M(t)

)>
p(t, λ, γ)

]
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T∑
t=1

AN(t) +Bz ≤ C

T∑
t=1

M(t)− Uz = 0

λ, γ, z ≥ 0
z integer


. (5.4)
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To deal with the stochasticity of demand, consider the following set-up to solve the prob-
lem. Assume that time periods are small enough that the probability that more than one
purchase occurs in one time period is very small. The probability that no purchase occurs
in time period t is then equal to

1−
∑
j∈N

λj(p, t)−
∑
k∈F

γk(p, t).

The objective is to maximise revenue-to-go function Vt(s, y). The Bellman equation equals

Vt(s, y) = max
p∈Rn+f

{∑
j∈N

λj(p, t)[pj + Vt+1(s−Aj , y)]

+
∑
k∈F

γk(p, t)[pk + Vt+1(s, y + ek)]

+

1−
∑
j∈N

λj(p, t)−
∑
k∈F

γk(p, t)

Vt+1(s, y)

}
.

(5.5)

This problem is intractable for all practical purposes due to the curse of dimensional-
ity. Therefore approximations or heuristics need to be considered. The next section intro-
duces the deterministic variant of this problem, where stochastic demand is replaced by
deterministic continuous demand. Subsequently, two heuristics, which both are asymp-
totically optimal, are presented that are based on the deterministic model.

5.2.2 Deterministic Model

Consider the stochastic model, but now assume that demand in time period t is deter-
ministic with parameters λ(p, t) and γ(p, t), and relax the integrality constraints. Since
the demand functions are regular, the demand variables can be used as decision variables
instead of price variables, as will be the case. The objective function equals

E

[
T∑
t=1

r(t, λ, γ)

]
=

T∑
t=1

r(t, λ, γ) =

T∑
t=1

(
λ(t), γ(t)

)>
p(t, λ, γ). (5.6)

The second constraint, regarding the distribution of flexible products over specific prod-
ucts, can be relaxed to an inequality without loss of generality. The optimisation problem
is therefore given by

max


T∑
t=1

r(t, λ(t) γ(t))

∣∣∣∣∣∣∣∣∣∣∣∣

T∑
t=1

Aλ(t) +Bz ≤ C

T∑
t=1

γ(t)− Uz ≤ 0

λ, γ, z ≥ 0


. (5.7)

To see that the second constraint can be relaxed to an inequality instead of an equality
constraint, consider an optimal solution (λ∗, γ∗, z∗) to (5.7) and assume that the second

inequality constraint is strict, i.e.,
∑T
t=1 γ

∗(t) < Uz∗. Construct z̃ by subtracting a total

amount of (Uz∗)k −
∑T
t=1 γ

∗
k(t) from the z∗i -s that correspond to product k ∈ F in

a distributive way, such that z̃ ≥ 0 and
∑
i z
∗
i − z̃i = 1>

(
Uz∗ −

∑T
t=1 γ

∗(t)
)
. Then
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Uz̃ =
∑
t γ
∗(t) and

∑T
t=1Aλ

∗(t) + Bz̃ ≤
∑T
t=1Aλ

∗(t) + Bz∗ ≤ C, so (λ∗, γ∗, z̃) is an
optimal solution to (5.7) where the second constraint is tight.

By the regularity assumptions on λ and γ both functions are concave, and therefore the
following Karush-Kuhn-Tucker conditions are necessary and sufficient for optimality:

5λrλ(λ, γ, t) = A>π∗, ∀t,
5γrγ(λ, γ, t) = Iρ∗, ∀t,

B>π∗ − U>ρ∗ = 0,

(π∗)>
(
C −

T∑
t=1

Aλ(t)−Bz
)

= 0,

(ρ∗)>
(
Uz −

T∑
t=1

γ(t)
)

= 0,

π∗, ρ∗ ≥ 0.

(5.8)

Let {λd(t)}Tt=1 and {γd(t)}Tt=1 be an optimal solution to the deterministic problem with
{pd(t)}Tt=1 the corresponding optimal prices and V d the objective value. The objective
function of (5.7) can be rewritten in a format that is useful in subsequent sections. Define

p̄j =

∑T
t=1 p

d
j (t)λ

d
j (t)∑T

t=1 λ
d
j (t)

, αj =

T∑
t=1

λdj (t),

p̄k =

∑T
t=1 p

d
k(t)γdk(t)∑T

t=1 γ
d
k(t)

, αk =

T∑
t=1

γdk(t).

Then the following holds:

V d =

T∑
t=1

(
λd(t), γ(t)

)>
p(t) =

∑
j∈N

αj p̄
d
j +

∑
k∈F

αkp̄
d
k. (5.9)

Proposition 5.1 below shows that the revenue V d of an optimal solution to the determin-
istic problem (5.7) is an upper bound on the objective value V ∗ of an optimal solution
to the stochastic problem (5.4). The statement and proof are adjusted from (Liu & van
Ryzin, 2008, Proposition 1) to match our model.

Proposition 5.1. Let V ∗ be the optimal objective value to (5.4) and let V d

be the optimal objective value to (5.7). Then V ∗ ≤ V d.

Proof. Consider the Lagrange relaxation of Equation (5.4):

max
λ,γ,z

E

[
T∑
t=1

(
N(t),M(t)

)>
p(t, λ, γ) + π>

(
C −

T∑
t=1

AN(t)−Bz

)

+ ρ>

(
Uz −

T∑
t=1

M(t)

)]
,

(5.10)

where π ≥ 0. Consider an optimal solution (λ, γ, z) to the stochastic problem
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(5.4). Then it holds that

C ≥
T∑
t=1

AN(t) +Bz (a.s.),

0 ≥
T∑
t=1

M(t)− Uz (a.s.).

Since π, ρ ≥ 0, the objective value V L in the Lagrange relaxation (5.10)
is larger than or equal to the objective value V ∗ of the stochastic problem
(5.4). Therefore, the objective value (V L)∗ of an optimal solution to the La-
grangian relaxation is larger than or equal to V ∗:

V ∗ ≤ (V L)∗.

Note that Problem (5.10) is separable in t, and E[N(t)] = λ(t) and
E[M(t)] = γ(t) hold. Therefore the problem is equivalent to maximising

T∑
t=1

[
r(t, λ, γ)− π>Aλ(t)− ρ>γ(t)

]
+ π>(C −Bz) + ρ>Uz.

The upper bound holds for all π ≥ 0 and ρ, so also for π∗ and ρ∗, the optimal
dual prices from the deterministic problem, with corresponding deterministic
solution (λ∗, γ∗, z∗). Complementary slackness gives

(π∗)>(C −A
T∑
t=1

λ∗(t) +Bz∗) = 0,

Uz∗ −
T∑
t=1

γ(t) = 0.

Therefore the objective value of the Lagrangian relaxation equals the de-
terministic objective value. Hence the deterministic solution V d is an upper
bound on the stochastic solution:

V ∗ ≤ V d.

5.2.3 Group Bookings

Many practical applications allow for group bookings or bulk purchases, where a customer
purchases more than one item of the same product.1 For example, a travel agency pur-
chases a bulk of seats in airlines and rooms in hotels at the same time; and in online
advertisement industry a publisher purchase a bulk of impressions. In the case of specific
products, this can be modelled by introducing products with resource consumption lAj ,
where l ∈ N is the size of the group booking. A flexible product on group products can

1Note that group bookings and bulk purchases do not refer to selling a stack of products to multiple
customers, where each customer receives only one product.
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then easily be defined by defining an appropriate set Fk. The allocation of the flexible
product to specific products then proceeds by bulk: all l reservations will be allocated to
one specific product j. However, it might be desirable to be able to allocate the l reserva-
tions to several different specific products. In order to do so, define Q ∈ Rf×f such that
Qii is the group size of product i ∈ F , and Qij = 0 if i 6= j. In the stochastic problem
(5.4) the second constraint then changes to

Q

T∑
t=1

M(t)− Uz = 0, (5.11)

and in the deterministic problem (5.7) the second constraint changes to

Q

T∑
t=1

γ(t)− Uz ≤ 0. (5.12)

The generalisation of the results in this chapter the group booking set-up is straightfor-
ward.

5.3 Solution Methods

This section proposes two heuristics to approximate the stochastic problem, called make-
to-stock (MTS) and make-to-order (MTO). Both heuristics provide a pricing and avail-
ability strategy: the pricing strategy sets prices for products, and the availability strategy
defines when products are open for sale or closed. In the case of MTS products are open
until certain booking limits are reached, and with MTO a product is open until a sale is
infeasible due to the capacity constraints. The intuition of both heuristics is based on the
MTS and MTO heuristics by Gallego & van Ryzin (1997).

5.3.1 Heuristic One: Make to Stock (MTS)

Let {pd(t)}Tt=1 be the optimal deterministic prices, and let {λd(pd(t), t)}Tt=1 and
{γd(pd(t), t)}Tt=1 be the corresponding intensities. Define the booking limits bλ ∈ Nn and
bγ ∈ Nf by

bλj := bαjc , and bγk := bαkc .

Price products according to {pd(t)}Tt=1 and offer the products until inventories are ex-
hausted, booking limits are reached, or the deadline T is reached. Booking limits are
beneficial for two reasons. First, the booking limits guarantee that the capacity con-
straints will be met. During the selling horizon it is therefore not necessary to keep track
of the feasibility. Second, booking limits protect against cannibalisation, a reduction of
sales of one product because another product is offered simultaneously. For example, train
companies often offer a limited amount of seats at a discounted price, often under certain
conditions like a no-refund policy, while simultaneously offering the full fare seats. In this
case, cannibalisation occurs: valuable customers who are willing to buy at full fare but
are also interested in the discounted price will buy discounted seats rather than full fare
seats, which leads to a reduction in revenue. When the booking limits of the discounted
seats are met, no more seats are offered at a discounted price, only the full fare. Now
those valuable customers will buy seats at full fare rather than the discounted seats, such
that no cannibalisation occurs. Proposition 5.2 below gives a bound on the performance
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of MTS. The statement and outline of the proof is taken from Gallego & van Ryzin
(1997, Theorem 2). However, because our model is different, the proof has to be adjusted
slightly.

Proposition 5.2. Define uj = sup
{
pdj (t)

∣∣λd(t) > 0, γd(t) > 0,∀t
}

for all
j ∈ N ∪ F . Let N(j) be Poisson distributed with parameter αj , for all
j ∈ N ∪F . Let VMTS be the objective value of the strategy that follows from
MTS evaluated in the stochastic problem (5.4). Then the following bound
holds:

VMTS

V ∗
≥ 1−

∑
j∈N∪F

uj

(√
αj

2
+ 1

)
∑

j∈N∪F
αj p̄

d
j

. (5.13)

Proof. For each j ∈ N ∪ F , denote with {T kj }
N(j)
k=1 the time periods where

purchases occurred (one purchase per T kj ). Let Rj be the revenue for prod-
uct j ∈ N ∪ F under the deterministic solution evaluated in the stochastic
problem. Then it holds that

E[Rj ] = E

N(j)∑
k=1

pdj (T
k
j )−

N(j)∑
k=bj

pdj (T
k
j )


≥ E

N(j)∑
k=1

pdj (T
k
j )

− ujE [(N(j)− bj)+
]
.

(5.14)

From Wald’s identity it follows that

E

N(j)∑
k=1

pdj (T
k
j )

 = E[N(j)]E[pdj (T
k
j )] = αj p̄

d
j .

Similar to Gallego & van Ryzin (1997) the following inequality is used: for a
random variable D with mean µ and standard deviation σ, and for any d ∈ R,
it holds that:

E[(D − d)+] ≤
√
σ2 + (d− µ)2 − (d− µ)

2
. (5.15)

From equation (5.15) it follows that

E
[
(N(j)− bj)+

]
≤
√
αj + (bj − αj)2 − (bj − αj)

2

≤
√
αj

2
+ |bj − αj |.

The fact that bj = bαjc leads to

E
[
(N(j)− bj)+

]
≤
√
αj

2
+ 1,

for the second term of (5.14). Therefore the expected value of Rj satisfies

E[Rj ] ≥ αj p̄dj − uj(
√
αj/2 + 1).
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Using the upper bound V ∗ ≤ V d =
∑
j∈N∪F αjp

d
j (t) completes the proof:

VMTS

V ∗
≥

∑
j∈N∪F

αj p̄
d
j − uj(

√
αj

2
+ 1)

V d
= 1−

∑
j∈N∪F

uj

(√
αj

2
+ 1

)
∑

j∈N∪F
αj p̄

d
j

.

A consequence of Proposition 5.2 is that MTS is asymptotically optimal as demand and
capacity go to infinity. To see this, consider the following set-up. For h ∈ N define
λh(p, t) = hλ(p, t), γh(p, t) = hγ(p, t) and Ch = hC for some fixed λ(p, t), γ(p, t), C,
and T .

Corollary 5.1. Let VMTS
h be the optimal objective value under deterministic

model h. Then

lim
h→∞

VMTS
h = V ∗.

Proof. Let π∗h = hπ∗, zdh = hzd, and ρ∗h = hρ∗ for zd(t) and shadow prices
π∗ and ρ∗. The claim is that (hλd, hγd, hz) is an optimal solution to (5.8) for
model h under prices pd. Firstly, the revenue function in model h equals

Rh(λh, γh, zh) =

T∑
t=1

(
λh(t), γh(t)

)>
p(t, λ, γ)

= h

T∑
t=1

(
λ(t), γ(t)

)>
p(t, λ, γ)

= hR(λ, γ, z),

hence 5λ,γ,zRh(λh, γh, zh) = h5λ,γ,z R(λ, γ, z). On the other hand

A>π∗h = hA>π∗,

Iρ∗h = hIρ∗,

B>π∗h − U>ρ∗h = h(B>π∗ − U>ρ∗),

hence the stationarity KKT conditions are satisfied. Next, observe that

Ch = hC = h(

T∑
t=1

Aλ(t)−Bz) =

T∑
t=1

A(hλ(t))−B(hz),

U(hz) = hUz =

T∑
t=1

hγ(t),

hence the primal feasibility KKT conditions are satisfied. Note that

αhj = h

T∑
t=1

λdj (t) = hαj ,
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for all j ∈ N ∪ F . The bound for model h now equals

VMTS
h

V ∗
≥ 1−

∑
j∈N∪F

uj

(√
hαj

2
+ 1

)
∑

j∈N∪F
hαj p̄

d
j

= 1−

∑
j∈N∪F

uj

(√
αj

2
+ 1

)
√
h
∑

j∈N∪F
αj p̄

d
j

= 1−O(h−1/2),

which converges to 1 as h→∞.

5.3.2 Heuristic Two: Make to Order (MTO)

The MTO heuristic prices products according to {pd(t)}Tt=1. The difference from the MTS
heuristic is that no booking limits are applied. Instead, products are offered until selling
the product is infeasible. For specific products j this occurs when the state (s−Aj , y) is
infeasible, and for flexible products k when (s, y+ek) is infeasible. Like the MTS heuristic,
MTO is asymptotically optimal and a bound for the performance of MTO is given. For
convenience, introduce the following notation for resources i and products j ∈ N ∪ F :

cij =

{
aij if j ∈ N,
max {aik |k ∈ Fj } if j ∈ F.

The statement and outline of the proof are taken from Gallego & van Ryzin (1997, The-
orem 3), but are adjusted to match our model.

Proposition 5.3. Let Si = {j ∈ N ∪ F |cij > 0} and α(Si) =
∑
j∈Si αj . De-

fine vi = max {uj |j ∈ Si }, v̄i = vi max {cij |j ∈ Si }, and
p̂i =

∑
j∈Si p̄jαj/α(Si). Let VMTO be the objective value of the strategy

that follows from MTO evaluated in the stochastic problem (5.4). Then the
following bound holds:

VMTO

V ∗
≥ 1−

m∑
i=1

v̄i
√
α(Si)

2

m∑
i=1

p̂iα(Si)

. (5.16)

Proof. Consider a modified system where negative inventories are allowed,
but a penalty of vi is charged for every unit of resource i that is backlogged. In
this system, if αij is strictly greater than the capacity left of i, backlogged
revenue for product j ∈ N ∪ F is equal to

pj(t)− vi ≤ pj(t)− uj ≤ 0. (5.17)
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Backlogged products also consume resources, which cannot be used by non-
backlogged products. Therefore V mod ≤ VMTO holds, where V mod is the
revenue corresponding to the modified model. In expectation this gives

VMTO ≥ V mod

=
∑

j∈N∪F
E[

N(j)∑
k=1

pdj (T
k
j )]−

m∑
i=1

viE[(

n∑
j=1

cijN(j)− Ci)+].
(5.18)

Like in the proof for MTS the first term equals
∑n
j=1 αj p̄j . For the second

term, observe that if d ≥ µ Equation (5.15) becomes (triangle inequality)

E[(D − d)+] ≤
√
σ2 + (d− µ)2 − (d− µ)

2

≤ σ + (d− µ)− (d− µ)

2
=
σ

2
.

(5.19)

Note that

E[
∑

j∈N∪F
cijN(j)] =

∑
j∈N∪F

cijαj ≤ Ci.

Consequently,

E[(
∑

j∈N∪F
cijN(j)− Ci)+] ≤ σi

2
,

with

σ2
i = V ar[

∑
j∈N∪F

cijN(j)] =
∑

j∈N∪F
c2ijV ar(N(j)) =

n∑
j=1

c2ijαj

≤ max
{
c2ij
∣∣ j ∈ Si}α(Si).

Hence

m∑
i=1

viE[(
∑

j∈N∪F
cijN(j)− Ci)+] ≤

m∑
i=1

vi
σi
2

≤ 1

2

m∑
i=1

vi

√
max

{
c2ij |j ∈ Si

}
α(Si)

=
1

2

m∑
i=1

vi max {cij |j ∈ Si }
√
α(Si)

=
1

2

m∑
i=1

v̄i
√
α(Si).

Hence:

VMTO

V ∗
≥
V d − 1

2

∑m
i=1 v̄i

√
α(Si)

V d
= 1−

∑m
i=1 v̄i

√
α(Si)

2
∑m
i=1 p̂iα(Si)

. (5.20)
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Corollary 5.2. Let VMTO
h be the optimal objective value under deterministic

model h. Then

lim
h→∞

VMTO
h = V ∗.

Proof. Similar to MTS, for the model it holds that h αh(Si) = hα(Si) (note
that the h-s in p̄i are cancelled). This gives

VMTO

V ∗
≥ 1−

∑m
i=1 v̄i

√
hα(Si)

2
∑m
i=1 p̂ihα(Si)

= 1−O(h−1/2), (5.21)

which goes to 1 as h→∞.

5.4 Numerical Examples

This section provides numerical results to illustrate the model and the performance of
the heuristics. The example that is used is based on a problem instance faced by a firm
in the online advertisement industry, the problem that motivated the research of this
study. In the online advertisement market publishers sell space on their website to adver-
tisers. Consider a publisher who owns three websites A, B and C. On each website, two
advertisement spots are available: a banner (1) on the top of the web page, and a box (2)
a bit lower. See Figure 5.1 for a visualisation.

A B C

1 1 1

2 2 2

Figure 5.1: Visualisation of advertisement spots on three websites.

The capacity of the resources are C = (100, 100, 70, 70, 30, 30), which are the views of the
websites, respectively. The resources are consumed in T = 10 time period (say, weeks, or
months), over which the publisher sells them in the form of products. The publisher sells
the specific products where only one resource is consumed separately, or both banner and
box of one website together. The incidence matrix A is therefore given by

A =


1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1

 . (5.22)
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The publisher also uses flexible products:

F1 = {1, 3} F4 = {2, 4, 6}
F2 = {1, 3, 5} F5 = {7, 8}
F3 = {2, 4} F6 = {7, 8, 9}.

The demand function is linear and independent from other products, i.e., demand for
product i is equal to λi(t) = ai(t) + bi(t)pi(t). The price sensitivity does not change over
time, so b(t) = b for all t. However, the intercept a(t) changes over time, and is given by

a(t) = ã

√
t∑10

s=1

√
s
. (5.23)

The parameters ã and b are given in Table 5.1.

ãi bi

Specific products

1 259 -0.10
2 211 -0.09
3 222 -0.07
4 114 -0.06
5 103 -0.05
6 81 -0.04
7 168 -0.08
8 97 -0.07
9 81 -0.06

Flexible products

1 108.11 -0.04
2 135 -0.05
3 108 -0.04
4 86 -0.06
5 124 -0.05
6 92 -0.06

Table 5.1: Parameter values for specific and flexible products.

5.4.1 MTS and MTO

First the performance of the MTS and MTO heuristics under the parameters described
above is discussed. To capture the effect of the size of the problem, the problem instances
are scaled by a factor h ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}. Furthermore, the heuristics are com-
pared to two additional heuristics: MTS-NF and MTO-NF (no flexible products). MTS-
NF and MTO-NF correspond to the MTS and MTO heuristics, except for the fact that no
flexible products are offered. The actual revenue of the strategies is calculated by means
of simulation. The errors are within 0.5% of the stated values, with 95% confidence. The
results are presented in Table 5.2.

MTS MTO MTS-NF MTO-NF
h UB Rev. %UB Rev. %UB Rev. %UB Rev. %UB

0.1 7869 5372 68.27 6971 88.59 4622 58.74 5352 68.01
0.2 15737 12370 78.60 14548 92.44 10506 66.76 11296 71.78
0.5 39342 34628 88.02 37493 95.30 28471 72.37 29605 75.25

1 78685 72162 91.71 76098 96.71 59133 75.15 60558 76.96
2 157370 148093 94.11 153748 97.70 121330 77.10 123131 78.24
5 393425 379339 96.42 387734 98.55 309386 78.64 312131 79.34

10 786850 767164 97.50 778854 98.98 624898 79.42 628605 79.89

Table 5.2: Performance of MTS and MTO heuristic, together with MTS-NF and MTO-NF.
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The results give two main insights. First, the MTO heuristic performs significantly bet-
ter than the MTS heuristic in this example. The original problem with h = 1 gives an
optimality gap of at most 3.29% for MTO and 8.29% for MTS. The gap could be smaller
because the reference revenue is only an upper bound on the optimal revenue attain-
able. For smaller h the optimality gap of MTS increases substantially to up to 31.73%
for h = 0.1, while for MTO the gap increases only up to 11.41%. As a result, protect-
ing resources for certain products to prevent cannibalisation is not profitable in the case
that demand is scarce. As the scale of the problem increases, the optimality gap becomes
smaller. The size of the problem compensates the booking limits.
The second insight is that not offering flexible products leads to an enormous revenue loss
compared to MTS or MTO: 19.3% for h = 10 to up to 23.2% for h = 0.1. Intuitively, flex-
ible products provide the flexibility of deciding which resources are consumed at a later
moment in time, when all demand is known. This flexibility and control over resource
consumption leads to more efficient management of resource allocation and utilisation of
capacity. This is in line with the findings of Gallego et alii (2004), who argue that offering
flexible products alongside specific products leads to higher capacity utilisation and could
attract additional customers without complete cannibalisation.

5.4.2 Estimation Error

Uncertainty in demand due to forecasting or estimation errors is an important issue and
may lead to suboptimal policies. As an illustration, this example shows the impact of
forecast/estimation errors on the performance of the different heuristics. In each simula-
tion the parameters of the assumed demand are randomly drawn according to a normal
distribution with mean µ, the parameter value of the true demand (a(t) and b(t)), and
standard deviation 1.96

√
|µ|/l. Here, l can be interpreted as the sample size, and the stan-

dard deviation follows from the confidence interval of the ‘estimated’ parameter µ. The
results are shown in Table 5.3.

MTS MTO
l UB Rev. %UB Rev. %UB
∞ 78685 72162 91.71 76098 96.71
10 78685 69936 88.88 72479 92.11
20 78685 70918 90.13 73978 94.02
50 78685 71537 90.92 75039 95.37

100 78685 71755 91.19 75469 95.91
200 78685 71875 91.34 75713 96.22
500 78685 72012 91.52 75923 96.49

1000 78685 72065 91.59 76000 96.59

Table 5.3: Results under estimation errors. The first row, where l =∞, represents the case
where demand is known and is the same as in Table 5.2.

As can be seen from the results, the performance does not suffer much from forecasting
errors. The good performance under demand uncertainty is in line with the results of
Petrick et alii (2012). Only for small datasets the revenue loss is 0.9-3.1% for the
MTS heuristic and 1.4-4.8% for the MTO heuristic (compared to the MTS and MTO
heuristics under true demand, respectively). Note that the revenue loss is higher for the
MTO heuristic than for the MTS heuristic. This can be explained by the fact that MTS
reserves resources for allocation of products. When products are priced too low due to
forecasting errors, MTO will sell them until the resources are exhausted, such that the
more expensive ones can not be sold any more. On the other hand, MTS will protect the
resources for the more expensive products.
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5.4.3 Group Bookings

In this final example the effect of group bookings is measured. Group bookings are com-
mon in many industry applications like hotels, airlines, and online advertisements. In this
section the model from Section 5.2.3 that incorporates group bookings is used. Flexible
products are allowed to be sold in groups of size 5 and 10. Demand is based on the pa-
rameters of Table 5.1, except for the fact that the demand parameter a(t) is multiplied
by 0.7, for groups of size 5 with 0.2, and groups of size 10 with 0.1. Table 5.4 shows the
results. The MTS and MTO strategies take group bookings into account; MTS-NG and
MTO-NG are the MTS and MTO strategies that do not take group bookings into account,
but instead price group reservations the same as they do single-product reservations.

MTS MTO MTS-NG MTO-NG
h UB Rev. %UB Rev. %UB Rev. %UB Rev. %UB

0.1 4687 2981 63.59 4155 88.64 2934 62.59 4035 86.09
0.2 9374 7177 76.56 8662 92.40 6932 73.94 8403 89.64
0.5 23436 20002 85.35 22323 95.25 21083 89.96 21394 91.29

1 46872 42243 90.12 45328 96.71 42994 91.73 42832 91.38
2 93745 87444 93.28 91567 97.68 85729 91.45 85536 91.24
5 234362 224873 95.95 230919 98.53 213386 91.05 213326 91.02

10 468724 455440 97.17 463773 98.94 426261 90.94 426203 90.93

Table 5.4: Performance of MTS and MTO under group bookings, together with MTS-NG
and MTO-NG.

Three observations can be made. First, there is a clear difference in performance between
the MTS and MTS-NG heuristics on the one side and the MTO and MTO-NG heuristics
on the other side. Similar to previous examples, the MTO heuristic performs better than
the MTS heuristic: by 7.3% for h = 1 and up to 39.5% for smaller problem sizes. Hence
selecting the wrong heuristic can have a dramatic impact on revenue. The fact that
MTS reserves resources for products by rounding the deterministic αj ’s may cause this
significant loss in revenue.

The second observation is that not taking group bookings into account results in a sub-
stantial revenue loss of up to 8.1%, for the MTO heuristic. The gap is larger when h
increases. MTS, however, does not always outperform MTS-NG: for h = 0.5 and h = 1
MTS-NG performs 5.4% and 1.8% better than MTS, respectively. According to these
examples, MTS does not only perform worse, but also shows no monotonicity in perfor-
mance, which makes it unreliable.

In conclusion, group reservations have a big impact on revenue, but forecasting and imple-
menting a method that can effectively take group reservations into account is challenging.

5.5 Concluding Remarks

Selling inventory as flexible products in bulk is common practice in the online advertise-
ment industry, but other industries (like retailing and FMCGs) could also profit from
introducing flexible products. Flexible products give the company the flexibility to as-
sign the customer close to consumption to a selection specific products, as capacity al-
lows. Moreover, since flexible products give the company this flexibility, it can ask a lower
price, which attracts new customer segments. Hence flexible products can lead to better
capacity utilisation and higher revenues. The numerical studies endorse this by showing
an increase in revenue of up to 20% when flexible products are offered alongside specific
products.
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This chapter introduces and analyses a pricing-based network RM model with flexible
products, and a non-trivial extension to group bookings/bulk purchases. Two practical
solution methods are examined that are efficient to solve and implement: the make-to-
order (MTO) and make-to-stock (MTS) heuristics, which are based on the deterministic
variant of the problem. Both heuristics set price product prices according to demand
for discrete decision moments in time, such that prices can dynamically be updated. The
MTS heuristic applies booking limits on products, with the goal of protecting inventory for
profitable future sales. However, numerical results show that the MTO heuristic, that does
not enforce booking limits, performs much better than MTS (up to 30%), especially when
inventories and demand are small. As an explanation, the enhanced capacity utilisation
that comes with assigning flexible products to specific products offsets the lost demand
that is caused by booking limits.

The analytical results provide theoretical optimality bounds on the heuristics, i.e., the
optimality gap is guaranteed to lie beneath a certain value, depending on the problem
instance. Moreover, it is shown that the heuristics are asymptotically optimal as capacity
and demand increase. The numerical examples, based on a problem instance from in-
dustry, support the analytical findings under different problem sizes: the optimality gap
converges from 31.73% for a small instance to 1.02% for a large instance.

Besides the flexible nature of the products, the selling in bulk – or in group bookings – is a
particular aspect of the problem that is dominating the industry. For example, publishers
do not sell their inventory per impression, but rather per 1,000 or 10,000 impressions per
customer. Group reservations of flexible products offer more flexibility in the assignment of
flexible products to inventory, as opposed to specific group reservations. The simulation
studies endorse the effectiveness of flexible group reservations: taking this effect into
account leads to 7.3% increase in revenue for an average-size problem.

Another aspect that is important in practice but often overlooked in academics is the
robustness of pricing strategies. The pricing methods of this study assume that demand
and price sensitivity is known exactly, but in practice this is not the case and only forecasts
are available. A desirable feature of the pricing strategy is that it is robust and stable
under forecast errors. To this account, a numerical study was performed to measure the
performance of the pricing strategies under forecast errors. The results show that for
both heuristics the revenue loss is reasonable (from 0.9% for small errors to 4.8% for large
errors), implying that the heuristics are quite robust and reliable for applications.

The results of this study have several implications that lead to topics for further re-
search. A popular trend in RM is customer behaviour, such as stockpiling and considera-
tion sets of customers. Solving the problem under choice-based demand is not straightfor-
ward, and might lead to promising insights. Also, an in-depth analysis of more heuristics
could lead to improved results. Although the optimality gap is at most 3.29% in the case
of h = 1 in Section 5.4.1, the potential increase in revenue can lead to substantial increase
in profit. The additional revenue will only account for more profit, since no extra costs
are incurred.
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CHAPTER 6

Choice-Based Single-Leg Revenue Management
under Online Reviews

This chapter proposes a revenue management model that integrates reviews and rat-
ings. The dependency between reviews and revenue is two-fold: the content of a review
depends on the product the customer purchases, and reviews impact the demand. A com-
plicating factor in this model is that the effects of reviews are delayed, i.e., by sacrificing
revenue now in order to get better reviews, long-term revenue can be increased. Because
the full planning problem of finding an optimal strategy for the proposed model is in-
tractable, a novel solution methodology is proposed to solve the problem approximately
by restricting the space of possible solutions to equilibrium strategies. It is shown that
equilibrium strategies for the full problem can be found by viewing the full problem as a
series of multi-objective Markov decision processes subproblems, and aiming for a target
review ratio in the subproblems while optimising revenue. Numerical studies show that
taking reviews into account in this manner can lead to an increase in revenue of up to
11% compared to the case where the sole objective is revenue.

6.1 Introduction

A recent development that influences sales in various industries is the wide availabil-
ity of reviews. For example, customers who attended a play in a theatre are given the
opportunity to share their experience with other potential clients via websites like Tripad-
visor. Research strongly suggests that reviews influence the buying behaviour of customers
(Pan & Zhang, 2011; Park & Lee, 2009; Yoo & Gretzel, 2011). For instance, Sparks &
Browning (2011) show that ‘consumers seem to be more influenced by early negative
information’ and Pavlou & Dimoka (2006), Vermeulen & Seegers (2009), and Ye et alii
(2011) show that more recent reviews have more impact. It is therefore in the interest of
the theatre to get good reviews and avoid bad reviews. Conversely, customer reviews are
influenced by the price/quality perception of the customer Zhou et alii (2014). This chap-
ter presents a pioneering study that proposes a decision-theoretic model that explicitly
includes reviews to maximise the revenue.

This chapter is based on Sierag & Roijers (2016).
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This chapter studies the problem of optimising revenue over multiple performances when
demand depends on reviews, and where cancellations, overbooking, and customer choice
preferences are taken into account. Moreover, the model contains a feedback mechanism:
on the one hand the creation of reviews depends on the purchases, and on the other
hand demand depends on reviews. The focus is on recent reviews instead of rating, since
rating tends to remain more or less constant, while customers are more influenced by
recent reviews, either positive or negative. Demand for a certain performance depends
on reservations of previous performances, due to the reviews that are released in the
meantime. This makes it a hard problem, suffering heavily from the curse of dimension-
ality. The approach of this study is to maximise revenue while the ratio between positive
and negative reviews remains constant, called equilibrium strategies.1 Searching in the
space of equilibrium strategies is an approximation, yet even under these circumstances
finding an optimal solution is challenging. An elaborate though tractable solution method
is provided, using a multi-objective Markov decision process formulation.

This study builds on three research areas. The first research area is the work on choice-
based assortment problems, such as the work in Chapter 3 and Talluri & van Ryzin
(2004a). We refer to Shen & Su (2007) for an overview of literature in this area. The
basic idea is that customer preferences depend on the products that are offered, and the
set of offered products should be optimised accordingly. The second area is the work on
e-word-of-mouth (eWOM), in particular the effect of reviews on demand, and the effect
of purchases on reviews. See for example the survey by Ye et alii (2011) for an overview
of related literature. Studies often show that the impact of reviews is strong, though no
connection is made to optimise assortments accordingly. Closest to the work in this chapter
is the article by Dellarocas et alii (2004), where reviews are used to forecast box office
revenues. However, the reviews are not used to optimise revenue, and the creation of new
reviews is is not considered. The third research area is the work on multi-objective Markov
decision processes (Roijers et alii, 2013). When it is not clear a priori what the relative
importance of each objective is and how the objectives interact, an set of different trade-
offs between the objectives is considered. Such a set is called a coverage set. In this study,
a series of multi-objective problems approximates an otherwise intractable problem.

This study makes the following research contributions: 1) a model that incorporates
reviews in the optimisation process (Section 6.2); 2) an analysis of the model indicating
that the full problem is intractable, and an approximation as series of tractable multi-
objective problems (Sections 6.3 and 6.4); and 3) numerical experiments indicate that
taking reviews into account induces significantly higher long-term revenue than when
solely revenue is optimised (Section 6.5). Finally, implications for research and practice
are discussed in Section 6.6.

6.2 General Model Description

The model is framed in the context of theatres. However, we emphasise that the model is
more general and can be applied to other single-leg experience-based products, like sports
events or concerts, or the cinema.2

Consider a theatre with C identical seats that wants to sell them for one or more plays
on multiple performances. In particular, assume a (possibly infinite) set I ⊂ N of fu-

1Note that this is not the only possible solution approach. However,this solution has the advantage
that it is tractable and leads to large improvements in revenue as Section 6.5 indicates.

2In general, the approach can be used for any problem that can be modelled as a series of decision
problems in which the output of an earlier problem (partially) parameterises the next problem in the
series.
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ture arrival dates, each with booking horizon of T time units (selling seats of a particular
performance only starts at T units before the performance), 0 being the arrival time. Over-
booking is allowed up to Cmax seats.3 Each customer has the opportunity to give a review
of their experience, which is positive or negative, and corresponds to a performance i ∈ I
of the past. The set of past reviews is given by R.

Demand depends on the reviews. Clients for performance i ∈ I arrive according to a
Poisson process λi(R) dependent on the current set of reviews, starting T days before
performance i. Each seat is sold as a fare product j, which is a combination of a seat
with a price rj and conditions, such as the cancellation policy. Moreover, customers are
influenced by the fare product when writing a review. The probability that fare product
j leads to a positive review is qpj and to a negative review it is qnj .

Assume that there is a finite number of fare products N = {1, . . . , n}. At each moment
in time, for each future performance separately that is at least T time units ahead, the
theatre manager decides which offer set S ⊂ N of fare products to offer. Depending on
the offer set S displayed and the reviews R, an arriving customer decides to either buy
one of the fare products j ∈ S, with probability Pj(R, S), or leave and buy nothing at
all, with probability P0(R, S).

Reservations are allowed to be cancelled, where a potential refund depends on the can-
cellation conditions of the product. Assume that cancellations occur independently from
each other. The cancellation rate γi(R) is independent of the product, but depends on
the reviews. If there are xij reservations for fare product j for performance i, then cancel-

lations occur with rate γi(R)xij . The costs for the theatre of a cancelled reservation of

product j at time t equals cij(t). When there are more reservations than capacity at the
end of the performance, i.e., when xi > Cmax, a penalty q(xi) is incurred. See Figure 6.1
for an overview of the model.

λi(R)
S

Control

...

Product j

rj , q
p
j , qpj

Pj(S)

...
P0(S)

γi(R)xij

Figure 6.1: Illustration of the model. Per performance the arrival process is Poisson dis-
tributed with parameter λi(R). The manager controls the offer set S. Under this offer set an
arriving customer buys product j ∈ S with probability Pj(R, S). With probability P0(R, S)
the customer buys nothing. Finally, cancellations of product j follow an exponential distri-
bution with parameter γi(R).

3Note that Cmax can be equal to C, hence the model without overbooking is a special case of this
model.
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6.2.1 Modelling Demand and Cancellations as a Function of Reviews

Demand is influenced by reviews, either positive or negative (Pan & Zhang, 2011; Park &
Lee, 2009; Sparks & Browning, 2011; Vermeulen & Seegers, 2009; Yoo & Gretzel, 2011). To
capture this effect, consider the following set-up. Let Qpi and Qni be the number of positive
and negative reviews resulting from performance i. Recent reviews are more relevant than
older reviews. Let α ∈ (0, 1) be the discounting parameter for relevance of reviews and let
M be the number of past performances that are relevant. Define the discounted reviews
Q̃pk and Q̃nk on performance k by

Q̃pk :=

k−1∑
i=k−M

αk−i−1Qpi , Q̃nk :=

k−1∑
i=k−M

αk−i−1Qni .

The most recent reviews of performance k − 1 are not discounted, while the relevant
reviews of arrival k −M are discounted most, by factor αM−1, M ≥ 2.

Let λ̄i, γ̄i ∈ R be the base parameter of demand and cancellations, respectively, for
performance i ∈ I. Let βλp , β

λ
n, β

γ
p , β

γ
n ∈ R. Define λi(R) and γi(R) by

λi(R) := λ̄i exp
(
βλp Q̃

p
k + βλnQ̃

n
k

)
,

γi(R) := γ̄i exp
(
βγp Q̃

p
k + βγnQ̃

n
k

)
.

In accordance with literature (Vermeulen & Seegers, 2009) it is assumed that positive
reviews have positive effect on demand and negative reviews have a negative effect on
demand, which translates to βλp > 0 and βλn < 0. For cancellations the opposite is ex-
pected: positive reviews result in less cancellations and negative reviews result in more
cancellations, i.e., βγp < 0 and βγn > 0. In line with Sparks & Browning (2011), the effect

of negative reviews is larger than positive reviews: βλp < −βλn for demand, and βγp < −βγn
for cancellations. The exponential function provides these intuitive features, as well as
the fact that demand cannot be negative. Define the review ratio ρ by

ρ :=
Q̃pk

Q̃pk + Q̃nk
.

Then an equivalent formulation for λi(R) and γi(R) is

λi(R) := λ̄i exp
(
β̃λp ρ+ β̃λn(1− ρ)

)
,

γi(R) := γ̄i exp
(
β̃γpρ+ β̃γn(1− ρ)

)
,

where β̃λp = βλp (Q̃pk+Q̃nk ), β̃λn = βλn(Q̃pk+Q̃nk ), β̃γp = βλp (Q̃pk+Q̃nk ), and β̃γn = βγn(Q̃pk+Q̃nk ).

6.2.2 Running Example

To illustrate the model, consider the following running example. To capture the effects
of reviews under different circumstances, four instances are considered by adjusting the
review probabilities and the review parameters of the demand. For both cases the effects
are either large or small, leading to four scenario’s: 1) large effect on both demand and
review probabilities; 2) large effect on demand and small effect on review probabilities;
3) small effect on demand and large effect on review probabilities; and 4) small effect
on both demand and review probabilities. The base demand is λ̄ for all performances,
with parameters (βλp , β

λ
n) = (1,−1.5), i.e., a large effect on demand, in cases 1) and 2);



Choice-Based Single-Leg Revenue Management under Online Reviews 95

and (βλp , β
λ
n) = (0.9,−1), i.e., a small effect on demand, in cases 3) and 4). The review

probabilities are presented in Table 6.1 below. A difference is made between a reservation
that is overbooked and one that is not. The difference is independent of the product, such
that it can be incorporated in a similar way that overbooking costs are incurred. The
values of the attributes are motivated by the findings of Zhou et alii (2014).

Large effect (cases 1 and 3) Small effect (cases 2 and 4)
No overbooking Overbooking No overbooking Overbooking

Product j qpj qnj qpj qnj qpj qnj qpj qnj
1 0.160 0.120 0.140 0.140 0.130 0.098 0.110 0.118
2 0.130 0.160 0.110 0.180 0.090 0.144 0.070 0.164
3 0.210 0.095 0.190 0.115 0.155 0.088 0.135 0.108
4 0.240 0.080 0.220 0.100 0.170 0.082 0.150 0.102
5 0.230 0.110 0.210 0.130 0.140 0.124 0.120 0.144
6 0.288 0.056 0.268 0.076 0.194 0.072 0.174 0.092
7 0.304 0.048 0.284 0.068 0.202 0.069 0.182 0.089
8 0.270 0.090 0.250 0.110 0.160 0.116 0.140 0.136
9 0.326 0.037 0.306 0.057 0.213 0.065 0.193 0.085

10 0.280 0.085 0.260 0.105 0.165 0.114 0.145 0.134

Table 6.1: Review probabilities for both large and small effect. In case of overbooking the
probabilities differ.

In this example, the purchase probabilities are modelled according to the commonly used
multinomial logit (MNL) model, where the sole attribute is price. The results of this
paper are more general, and the MNL model is only used as an illustration. Utility plays
a crucial role in the MNL model (Ben-Akiva & Lerman, 1985). Let uj = βrj be the mean
utility of product j, where β ∈ R is the corresponding weight. The purchase probabilities
are then given by

Pj(S) =


euj∑

i∈S e
ui + eu0

if j ∈ S,

0 otherwise,

for all j ∈ N . Assume there are two types of customers: high price-sensitive and low
price-sensitive. High price-sensitive customers have parameter βH = −0.005, while low
price-sensitive customers have parameter βL = −0.0015.

6.3 A Tractable Model

In this section we formulate the optimisation problem of maximising revenue in the long
run by taking into account the reviews. First, computational issues related to the size of
the problem are discussed. Second, after concluding that the full problem is intractable, a
model that approximates the large problem by breaking it down to a series of subsequently
smaller problems is proposed. Within this (infinite) series, the proposed solutions are those
that lead to stable review sets. Such solutions are referred to as equilibrium strategies. On
the level of a smaller problem, the review sets must be stable for an equilibrium strategy,
for two objectives: positive reviews, and negative reviews. These objectives supplement
the (immediate) revenue objective. A dynamic programming formulation is given to find
the resulting three-dimensional value function. In the long run, the review scores influence
the long-term revenue. However, it is not clear at the level of a smaller problem how the
review scores translate to long-term effects on the revenue. Therefore, in this section the
focus lays on a three-objective model that incorporates the different trade-offs between
these objectives. In Section 6.4 the computational method to find equilibrium strategies
is discussed.
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6.3.1 Computational Issues

Suppose that the sales manager needs to optimise revenue for multiple shows or perfor-
mances. Then the creation of new reviews after a show influences the purchasing behaviour
of customers in the future. Moreover, the reviews may be updated during the booking
horizon of another performance. Hence, strategies for a particular performance need to
take into account the strategies of other performances.

To illustrate this, consider the following example, with only three performances with a
booking horizon of three days. Only the reviews from the last performance are used, i.e.,
M = 1. Denote Sit as the offer set that is offered t days beforehand for performance i. The
offer sets of the first performance are not influenced by any previous decisions, as well as
the first two offer sets of performance 2 and the first of performance 3. However, after
the first performance, reviews are updated. The amount of positive and negative reviews
depends on offer sets S1

1 , S1
2 , and S1

3 . Therefore, the decision which offer set S2
1 to use on

the last day before performance 2 depends on all offer sets of performance 1. Note that
S3

2 is also dependent on all offer sets of performance 1. Furthermore, after performance
2 the reviews are updated, such that S3

1 depends on all offer sets of arrival 2, and hence
also on all offer sets of performance 1. See Figure 6.2 for an overview of this example.

review ratio 0.5 0.5 0.5 0.6 0.6 0.6

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5

performance 3 S3
3 S3

2 S3
1

performance 2 S2
3 S2

2 S2
1 ∗

performance 1 S1
3 S1

2 S1
1 ∗

Figure 6.2: Illustration of example with M = 1, K = 0, and T = 3 over a five day period. A
star ∗ denotes the end of a performance and the update of the reviews.

Let Ri be the revenue that results from performance i and denote by Si = {SiT , . . . , Si1}
the strategy of performance i. Then Ri is a function of the strategies of all performances
up to day i: Ri

(
S1, . . . , Si

)
. The objective φI(S) to maximise the finite horizon problem,

with I ∈ N the horizon length, is therefore given by

φI(S) =

I∑
i=1

Ri
(
S1, . . . , Si

)
,

while the a-discounted infinite horizon objective function φ∞(S) is given by

φ∞(S) =

∞∑
i=1

ai−1Ri
(
S1, . . . , Si

)
.

At every moment in time products for up to T performances are in consideration to be
for sale. Therefore, the state space for these T parallel processes has to be taken into
account when solving the problem. Just using the Cartesian product of the T processes
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is not enough. Namely, this leads to a system that does not have the Markov property,
because to make a decision it is necessary to take the review ratio into account. One
option is to include the review ratio in the state space as a real number. However, this
leads to a continuous state space, yielding an intractable problem. An option with finite
state space is to keep track of the strategies of all past performances that are necessary
for calculating the review ratio. This model has the Markov property. However, for both
the finite horizon and the discounted infinite horizon problem the action space as well
as the state space are still too large: the action space has size NT and the state space
has size up to N I for the finite horizon, and converges to an infinite state space for the
infinite horizon problem. Therefore, finding an optimal solution in the set of all feasible
solutions is intractable because of the curse of dimensionality.

6.3.2 Equilibrium Strategies

Motivated by these deliberations, consider the set of equilibrium strategies, which consists
of strategies that keep the expected review ratio constant and equal to the target review
ratio. In equilibrium, i.e., when the target review ratio is achieved and remains fixed (in
expectation), it is clear beforehand what the expected review ratios at all time periods
will be for each performance. Also, the long-term revenue is no longer influenced by
changing review ratios; Ri solely depends on Si. Therefore, each equilibrium can be solved
separately and the problem can be solved per target review ratio. In such cases, the long
term revenue is equal to the number of times a single-performance dynamics problem is
executed, times the revenue attained in this single-performance dynamics problem, given
the fixed target review ratio. Such a single-performance dynamics problem is modelled as
a multi-objective Markov decision process and is tractable.

initial
review
scores

parameterised

MOMDP

OLS&
SDP

CCS

target

rating

mixture
policy

update review scores

Figure 6.3: The process of finding an equilibrium policy. Starting from an initial param-
eterised MOMDP, a CCS is identified, from which the mixture policy with the intended
target review ratio is chosen, of which the output in terms of positive and negative review
scores are used reparameterise the MOMDP. This process repeats until the parameters of
the MOMDP converge.

However, before the system is in equilibrium, it must be shown that the equilibrium,
i.e., the right review ratio, can in fact be reached. To this end, the process of Figure
6.3 is followed. An initial MOMDP is constructed on the basis of initial review scores,
i.e., the parameters for demand and review probability are calculated from the current
reviews. Then, a convex coverage set (formally defined in Section 6.4.1) is computed,
from which a stochastic mixture policy can be constructed that optimises the short-term
revenue while guaranteeing that the target review ratio is met. Executing this stochastic
mixture policy leads to new review scores. With these new review scores, the process is
restarted until the parameters of the MOMDP converge. After that, the maximal revenue
for the target review ratio is determined, as the value of the equilibrium strategy.
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To illustrate the equilibrium strategies in the successive model, consider the example from
earlier in this section. Suppose the review ratio on day 0 is 0.5 and the target review ratio is
0.6. Then the review ratios on days 1 to 5 equal 0.5, 0.5, 0.5, 0.6, and 0.6, respectively. All
performances are then separately solved and revenue is optimised to target review ratio
0.6.

In the remainder of this section, a method is developed that optimises revenue to a target
review ratio.

6.3.3 One Performance Dynamics

The one performance problem can be modelled as a finite-horizon continuous-time multi-
objective Markov decision process over T time units. Define the state space by

X := {0, . . . , Cmax},

where x ∈ X represents the number of reservations. The action space A at each time step
is the set of all possible offer sets S ⊂ N .

To solve the problem, time is discretised and divided into T time periods, where the
length of the intervals is such that the probability that more than one event occurs is
very small (following Chapters 3 and 4). To formulate the transition probabilities, it is
assumed (following Chapters 3 and 4) that only one event occurs per time period, where
an event is either an arrival, a cancellation, or neither arrival nor cancellation. Denote
with λ the probability that a customer arrives in a time period; and γx the probability
that a product is cancelled in state x. The probability that no purchase occurs in a time
period equals the sum of the probability that neither an arrival and nor a cancellation
occurs, and the probability that an arrival occurs but the arriving customer makes no
purchase. This is equal to

(1− λ− γx) + λP0(S) = 1− λ
∑
j∈S

Pj(S)− γx.

In each time period the decision needs to be made which set S to offer. Recall that time
has to be scaled such that λ + γC ≤ 1 for the probabilities to be well defined. The
transition probabilities from a given state 0 < x < Cmax, are thus:

P (x′ = x+ 1|x, S) = λ
∑
j∈S

Pj(S),

P (x′ = x− 1|x, S) = γx,

P (x′ = x|x, S) = 1− λ
∑
j∈S

Pj(S)− γx,

and 0 otherwise. When x = Cmax it is not allowed to offer any fare products, and the
only possible transitions are due to cancellations.

Now define the reward function R : X ×A → R3 as follows. Let R1(x, S) be the expected
immediate revenue reward; R2(x, S) the expected good review reward; and R3(x, S) the
expected bad review reward, in a state x for an action S. Define r1j = rj , r2j = qpj ,
and r3j = −qnj for all j ∈ N . Define c1j(t) = cj(t), c2j(t) = qpj , and c3j(t) = −qnj for all
j ∈ N and for all t. The expected costs that follow from cancellations can be added to
the immediate rewards when a product is purchased, since neither the booking system
nor the manager has control over the cancellations of current reservations (see Section 3.3
for a detailed description of this derivation). By doing so, it is not necessary to account
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for the costs of cancellations of a product purchased at a time step later in the decision
process, allowing the state x to be Markov.

The expected cancellation costs for objective i ∈ {1, 2, 3} that follow from selling product
j in time step t is equal to

∆Hij(t) =

{
γcij(t) + (1− γ)∆Hij(t− 1) if t > 1,

0 if t = 1.

The expected reward that includes the expected costs of cancellations is therefore given
by rij −∆Hij(t), for all j ∈ N , for i = 1, 2, 3, and for all t. The immediate reward for a
cancellation,4 as well as nothing happening is 0.

6.3.4 Policies and Value Vectors

A manager can interact with the model by executing a policy with a corresponding
value. In the multi-objective (rather than single-objective) setting, stochastic policies can
Pareto-dominate deterministic policies (Vamplew et alii, 2009; Wakuta, 1999). Therefore,
define the policy space Π, as all possible mappings of states, time steps, and actions (i.e.,
fare-products) to a probability of taking that action: π : X ×{0, . . . , T}×A → [0, 1]. For
each state and time step, the probabilities for each action should be positive and should
sum to 1.

A given policy, π(x, t, S), induces a probability distributions over execution trajectories
(xT , ST , r

T , ... x1, S1, r
1, x0), where rt is the reward vector corresponding to time step

t. Each such a trajectory has an associated vector-valued return, i.e., the sum of the
reward vectors in the trajectory. The value of a policy is its expected return. Because the
returns are additive (Roijers et alii, 2013), the value of a policy π for a given time step
and state, V πt (x) can be expressed recursively with a Bellman equation in vector form,
or, as separate Bellman equations per objective:

V πi,t(x) =
∑
S⊂N

π(x, t, S)

{
λ
∑
j∈S

Pj(S)
[
rij −∆Hij(t) + V πi,t−1(x+ 1)

]
+ γxV πi,t−1(x− 1)

+

1− λ
∑
j∈S

Pj(S)− γx

V πi,t−1(x)

}
.

(6.1)

A deterministic policy is a policy π such that for all (x, t) it holds that π(x, t, S(x, t)) = 1
for some S(x, t) ⊂ N , and π(x, t, S) = 0 for all S 6= S(x, t). A deterministic policy π(x, t)
may be seen as a mapping: π : X×{0, . . . , T} → A. In this case, the marginalisation over
actions drops out of the Bellman equation:

V πi,t(x) =λ
∑
j∈S

Pj(π(x, t))
[
rij −∆Hij(t) + V πi,t−1(x+ 1)

]
+ γxV πi,t−1(x− 1)

+

1− λ
∑
j∈S

Pj(π(x, t))− γx

V πi,t−1(x).

(6.2)

4The immediate reward for cancellations is 0, because the expected costs are already accounted for in
the purchase event rewards (see Section 3.3).
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6.3.5 Scalarisation and Scalarised Solution Methods

In general there is no single policy that is best with respect to all objectives, because
there are different policies that yield different trade-offs between the objectives. In the
multi-objective decision making literature, a certain trade-off is typically preferred on the
basis of the partially unknown preferences of a user, i.e., a human decision maker. These
preferences can be expressed in terms of a scalarisation function, or utility function, f ,
which collapses the value vector of a policy, i.e., the vector of values of a policy in each
objective, to a scalar:

V πw = f(V π, w), (6.3)

where V π is the value vector of a policy π, and w is a vector parametrising f . In practice,
only limited information is available about the function f . Therefore, the solution to a
multi-objective decision problem is a set of value vectors and associated policies that cover
all possible f and w. The human decision maker can choose her preferred policy from this
set.

In our problem, there is no human decision maker. Instead, the function f represents the
long-term revenue, as a result of optimally balancing the review scores and the immedi-
ate revenue. To determine the optimal long-term revenue exactly however, the intractable
problem discussed at the beginning of this section has to be solved. Gladly, it not neces-
sary to do that at this stage. Instead, assume that f is unknown but with some known
constraints. This results in a tractable model that describes one-day-arrival dynamics.

In the problem at hand, i.e., the one-day-arrival dynamics multi-objective Markov decision
process (MOMDP) model, the exact shapes of f and w are unknown. Therefore, the aim
is to find a set of all possibly optimal solutions for the MOMDP, i.e., a set that covers all
possible f and w that fit the known constraints about f and w (Roijers et alii, 2013):

Definition 6.1. Let F be a set of scalarisation functions. Then a set of
policies CS is called a coverage set if for every scalarisation function f ∈ F
and every weight w there is a policy π ∈ CS such that V πw ≥ V π

′

w for all
π′ ∈ Π, and, conversely, if for every policy π ∈ CS there exist a scalarisation
function f ∈ F and a weight w such that V πw ≥ V π

′

w for all π′ ∈ Π.

In the next section, the CS is specified further, by imposing constraints on f that follow
from the available information about how the value vectors attainable in the MOMDP
model affect the long-term revenue. After that, the coverage set for the one-day-arrival
dynamics MOMDP is used to determine approximately optimal strategies for the full
problem.

6.4 Computing Coverage Sets for Single-performance Planning

In this section, coverage sets for one-day-arrival dynamics MOMDP planning are dis-
cussed. Firstly, the appropriate CS is derived from the available information about how
immediate revenue and reviews affect the long-term revenue. Secondly, an algorithm that
computes this CS is discussed. Finally, a way to employ the CS to improve long-term
revenue is proposed.
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6.4.1 Coverage Sets

Recall that the long-term revenue can be expressed in terms of a scalarisation function
f(Vπ,w). Which undominated policies need to be contained in the coverage set depends
on what is known about f and w. Sometimes it is known beforehand that f has a particular
shape. For example, f might be linear (White & Kim, 1980).

Definition 6.2. A linear scalarisation function is the inner product of a
weight vector w and a value vector V π:

V πw = w · V π. (6.4)

Each element of w is greater than or equal to 0, and specifies how much
one unit of value for the corresponding objective contributes to the scalarised
value.

Linear scalarisation functions are both common and intuitive. The most common situation
in which linear scalarisation applies is when the value vectors can be translated into
monetary value. For example, consider a task in which objective corresponds to quantities
of various resources that need to be bought or sold on a market. For revenue management
this might therefore be the most intuitive way of scalarising. However, linearity is a strong
assumption, that cannot be made in this context.

In fact, only the following information about f can safely be assumed:

1. immediate revenue always contributes positively to the long-term revenue,

2. positive reviews contribute positively to the long-term revenue, and

3. negative reviews always contribute negatively to the long-term revenue.

When a negative review objective is redefined as −1 times the number of negative reviews,
an f is obtained that is monotonically increasing in all objectives.

Definition 6.3. Let V πi denote the value of policy π in the i-th objective.
Let π, π′ ∈ Π be two policies. A scalarisation function f is monotonically
increasing if for all i ∈ {1, . . . , I} such that V πi ≥ V π

′

i , the following inequality
holds for all weights w:

f(V π, w) ≥ f(V π
′
, w). (6.5)

The assumption that is f is monotonically increasing guarantees that if more of one
objective is obtained while not losing anything in another objective, the utility cannot
go down. Note that linear scalarisation functions (with non-zero positive weights) are
included in the family of monotonically increasing functions. Monotonicity is therefore a
less strict assumption than linearity.

When an optimal solution is needed with respect to all linear f , a coverage set is needed
that contains an optimal solution for every possible weight vector w in Equation 6.4. The
coverage with respect to linear f is called a convex coverage set (CCS).
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Definition 6.4. A set of policies CCS is a convex coverage set if for all
weights w there is a policy π ∈ CCS such that w · V π ≥ w · V π′ for all π′ ∈ Π
and, conversely, if for all policies π ∈ CCS there is a weight w such that
w · V π ≥ w · V π′ for all π′ ∈ Π. Without loss of generality, assume that w
adheres to the simplex constraints, i.e., all elements of w are positive and sum
to one.

The coverage set for the family of monotonically increasing functions is called a Pareto
coverage set (PCS).

Definition 6.5. Let �P denote weak Pareto-dominance, i.e.,
V π �P V π

′ ≡ ∀i V πi ≥ V π
′

i . A set of policies PCS is a Pareto cov-
erage set if for all policies π ∈ Π there exists a policy π ∈ PCS such
that

V π �P V π
′
.

I.e., for every possible policy, there is a policy in the PCS, with at least equal value in all
objectives.

Because monotonicity is a less strict assumption than linearity, the PCSs are typically
much larger than the CCSs. Furthermore, because of the possibly non-linearity of the
scalarisation function, policies that constitute a PCS are much harder to obtain than
those that constitute a CCS. Nonetheless, it is not necessary to represent PCSs explicitly
if it can be assumed that stochastic policies are allowed. This is due to a result by
Vamplew et alii (2009) which states that for any MOMDP, a PCS of stochastic policies
can be constructed from a given CCS of deterministic policies, by taking so-called mixture
policies from policies in this CCS. A mixture policies is constructed by taking a subset of
N policies from the CCS and assigning each a probability of being executed.

The difference between the CCS and the PCS with or without stochastic policies is il-
lustrated in Figure 6.4, where all the possible values of deterministic policies for a two-
objective MOMDP are denoted as points. The axes represent the different objectives. Note
that the grey points are neither in any PCS or CCS, as they are dominated by one of the
other points (i.e., there is another point with a higher value in all objectives). The points
π1, π2, and π3 represent a possible CCS of deterministic policies, while pi4 represents
a point that may, but is not necessarily in the CCS. Note that a CCS of deterministic
policies is also a CCS for stochastic policies as there is always a deterministic policy that
is optimal for any w (Howard, 1960; Roijers et alii, 2013). Point π5 would be in a PCS
if stochastic policies were not allowed as it is not dominated by another point. However,
when stochastic policies (including mixture policies) are allowed, the PCS is represented
by all the values on the black lines, on which there are policy values that dominate π5.

To summarise, all the Pareto-optimal policy values of stochastic policies can be con-
structed by mixing deterministic policies from a CCS of deterministic policies. There-
fore, this study focuses on finding methods for finding a CCS, and construct policies with
values on the PCS of stochastic policies when necessary. Thus, define solving an MOMDP
as finding a convex coverage set.
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Figure 6.4: (Left) A stochastic PCS can be constructed from a deterministic CCS. (Right)
The scalarised value as a function of the linear scalarisation weight.

6.4.2 Optimistic Linear Support

In order to compute the CCS for the single arrival model, the Optimistic Linear Support
(OLS) algorithm (Roijers et alii, 2015) is used. OLS is a general framework for solving
multi-objective decision problems (including MOMDPs, Roijers et alii, 2014). It takes a
single-objective solver – such as dynamic programming – as a subroutine, and produces a
CCS within a finite number of calls to this subroutine. In this section, the framework is
described, and the specific implementation of OLS for multi-objective revenue manage-
ment.

Because OLS computes the CCS, it can make use of linear scalarisation. Under this
assumption, define the scalarised value function V ∗CCS(w) that provides the maximal
scalarised value given a linear scalarisation weight w:

V ∗CCS(w) = max
V π∈CCS

w · V π.

Here, V ∗CCS(w) is a piecewise linear and convex (PWLC) function, because each value
function defines a (hyper)plane over the weight simplex, as illustrated in Figure 6.4 (right),
and V ∗CCS(w) maximises over these hyperplanes. That is, it consists of the convex upper
surface of the lines in Figure 6.4 (right).

OLS builds up the CCS incrementally by solving a series of linearly scalarised instances
of the MOMDP, for different w. The optimal policy π to an instance scalarised with w
maximizes V πw = w ·V π. When this π is identified, V π is added to a partial CCS X, which
converges to a CCS.

To select good w’s for scalarisation, OLS exploits the observation that
V ∗X(w) = maxV π∈X w · V π is PWLC over the weight simplex. In particular, OLS
selects only so-called corner weights that lie at the intersections of line segments of the
PWLC function V ∗X(w) that correspond to the value vectors found so far. For example, in
Figure 6.5 on the left, V ∗X(w) is indicated with bold line segments. There are two pay-off
vectors in X, and there is one corner weight. The maximal potential error reduction
that can be made by identifying a new pay-off vector u(a) is at a corner weight Cheng
(1988). The potential error reduction is denoted with dashed blue vertical lines, and is
at present ∆. OLS scalarises the MOMDP at this corner weight and solves it using a
single-objective solver, obtaining the optimal policy for that weight. The multi-objective
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Figure 6.5: The scalarised value as a function of weights V ∗X(w) (bold segments) for
X = {(0, 3), (3, 0)}. There is one corner weight: (0.5, 0.5) (Left). Adding a new value vector,
(2.0, 2.5), to X, thereby improving V ∗X(w) (Right).

value of this policy, V π, improves over V ∗X(w) at that corner weight, as shown on the
right-hand side of Figure 6.5 indicated by the red dashed line on the right. By continuing
to find new corner weights and solving scalarised MOMDPs for corresponding to these
corner weights, OLS is guaranteed to produce an exact CCS after solving a finite number
of single-objective problems. That is, when no improvements are found at any remaining
corner weights, the possible error reduction becomes 0, and a CCS is found. When there
are multiple corner weights, OLS first solves the scalarised problem with the highest
possible error reduction ∆.

After solving a scalarised MOMDP, for a given w, a policy w is obtained. If a standard im-
plementation of dynamic programming would be used, the single-objective policy value
V πw would also be obtained. Because OLS requires V π however, this would mean that
policy evaluation has to be used to obtain this multi-objective value. Therefore, in this
implementation, an improvement is made over standard DP which is called scalarised
dynamic programming (SDP). SDP keeps track of the multi-objective value vectors while
maximising the value for w, thereby preventing having to perform separate policy evalu-
ation steps.

6.4.3 Equilibrium Strategy

This study proposes to find equilibrium strategies that maximise expected revenue in the
long run. For a given CCS with input review ratio ρ, an equilibrium strategy π(ρ) that
achieves ρ can be found as follows. Each deterministic stationary policy π ∈ CCS has a
corresponding value vector Vπ. Hence each policy can be represented in terms of a value
vector. This leads to a three-dimensional value space CCS′ with revenue, positive reviews,
and negative reviews as axes:

CCS′ = {Vπ |π ∈ CCS} . (6.6)

Consider Figure 6.6 below, where a sketch of CCS′ is given by the convex non-linear
surface. This surface represents all potential optimal value vectors, covering all review
ratios. However, not all value vectors need to be considered: the space CCS′ can be
reduced to the value vectors Vπ ∈ CCS′ for which the review ratio equals ρ. In order to
do so, consider the hyperplane H for which the review ratio equal ρ:

H =

{
x ∈ R3

∣∣∣∣ x2

x2 − x3
= ρ

}
=
{
x ∈ R3

∣∣x2(ρ− 1)− ρx3 = 0
}
.
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A sketch of the hyperplane is given in Figure 6.6. The reduced value vector space, con-
sisting of value vectors in CCS′ for which the review ratio is equal to ρ, is then given by
the intersection CCS′ ∩ H. In Figure 6.6 the intersection CCS′ and H is emphasised by
the black thick line.

Figure 6.6: Visualisation of the set CCS′ of potentially optimal value vectors (convex non-
linear surface), the hyperplane H of value vectors for which the review ratio is equal to
ρ (hyperplane cutting CCS′), and their intersection CCS′ ∩ H, the set of all potentially
optimal value vectors for which the review ratio equals ρ (thick black line).

Hence the value vector Vπ ∈ CCS′ ∩ H with optimal revenue gives the solution to the
problem at hand:

π(ρ) = arg max
π∈CCS

{
V π1
∣∣Vπ ∈ CCS′ ∩H

}
.

A closer look at the solution space provides insight in the evaluation of the optimal
solution π(ρ). First note that CCS, and therefore CCS′, is a convex set consisting of a
finite number of faces. Therefore, CCS′ ∩ H is a line in R3 consisting of a finite number
of line segments, corresponding to faces of CCS′ that intersect with H. Hence π(ρ) is one
of the corners of those line segments.

Now that an equilibrium strategy π(ρ) can be found for every ρ, the goal is to find the
strategy π∗, with corresponding target review ratio ρ∗, that optimises revenue:

π(ρ∗) = arg max
π(ρ)

V
π(ρ)
1 .

Two computational challenges arise in these evaluations:

1. Not all target review ratios are attainable. The CCS with input ρ can attain the
review ratios [ρ, ρ]. If ρ /∈ [ρ, ρ], then no equilibrium strategy exists and ρ is not
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a feasible target review ratio. Only feasible target review ratios need to be consid-
ered. However, it is not clear beforehand which values of ρ are feasible.

2. Optimising over all target review ratios is challenging. The set of feasible target
review ratios is continuous, and in order to find the optimal revenue corresponding
to a certain target review ratio ρ the whole procedure described in this section has to
be followed. Under these deliberations the authors propose two approaches to deal
with the continuous variable ρ. The first approach descretises the set of attainable
values of ρ, denoted by P ⊂ R, |P| < ∞. Then, an optimal policy π(ρ∗) over P is
used:

ρ∗ = arg max
ρ∈P

V
π(ρ)
1 . (6.7)

The second approach is iterative and of stochastic nature. Each iteration an arbi-
trary ρ is selected from the set of feasible values for ρ, according to some distri-

bution. If V
π∗(ρ)
1 > V

π∗(ρ′)
1 , with ρ′ the best target review ratio found so far, then

update ρ′ with ρ. Continue until some stopping criterion is hit.

6.5 Numerical Examples

In this section numerical results are provided of an implementation of the multi-objective
revenue management model. The two main goals of these examples are 1) to show how
to interpret and use the convex coverage set; and 2) to numerically validate equilibrium
strategies. Examples of realistic size are used.

All examples use the following set-up. Part of the parameters that are used are from the
example of Section 6.2, and part is based on the example used in the numerical results in
Section 3.5 and Talluri & van Ryzin (2004a). Let n = 10 be the number of products sold
with corresponding price vector

r = (240, 220, 190, 160, 120, 112, 96, 80, 74, 70).

Overbooking is allowed up to 20% of the total capacity C = 200. Time is discretised to
T = 1000. The demand, cancellation rate, and purchase probabilities are independent
from the time period t. The base demand per time unit is equal to λ̄ = 0.2. The
cancellation rate is assumed to be γ = 0.0004. The values from the example of Section
6.2 are used for both review probabilities and purchase probabilities, including the four
different scenarios.

6.5.1 One Instance: Policy Analysis

This example examines the results for scenario 1 from the example of Section 6.2, where
the current review ratio is ρ = 0.6. The resulting convex coverage set is presented in Table
6.2. Besides the total expected revenue, the positive reviews, and the negative reviews,
also the resulting review ratio ρ is given. The solutions are ordered by revenue. The value
space is three dimensional (revenue, positive reviews, and negative reviews). To provide a
graphical representation of the value space, consider the three faces presented in Figures
6.7, 6.8, and 6.9. In each figure the convex coverage set that follows from revenue and
review ratio is also given. Moreover, Figure 6.10 provides a visual representation of review
ratio versus revenue.
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Two observations of interest can be made from this table and accompanied figures. First,
by sacrificing revenue the review ratio can be increased, as is expected. Optimising revenue
results in total expected revenue of 27098.09 and review ratio of 0.57, while optimising the
review ratio yields total expected revenue of only 7493.76, a 72% decline, and review ratio
of 0.9, a 56% increase. Sacrificing revenue does not necessarily lead to a higher review
ratio though. For example, the optimal solution corresponding to the sixth row in Table
6.2 leads to an expected revenue of 15137.33 and review ratio 0.84. The fifth row shows
that by sacrificing revenue to 14252.8 the number of positive reviews can be increased,
but the number of negative reviews is increased. In this case it leads to a decrease in
review ratio to 0.81. Therefore, the procedure in Section 6.3 needs to be used to find an
equilibrium strategy. In this case, The equilibrium of ρ∗ = 0.6 has optimal revenue of
27027.18, a 3.18% increase with respect to solely optimising revenue (at ρ = 0.57).

Revenue Positive reviews Negative reviews Rating ρ
0 0 0 -

7493.76 33.01 3.75 0.90
12513.99 42.88 9.28 0.82
12595.63 41.42 6.30 0.87
14252.80 42.48 9.77 0.81
15137.33 41.09 7.57 0.84
16021.48 41.67 10.38 0.80
17983.01 40.40 11.16 0.78
18693.24 39.78 10.61 0.79
19985.47 38.61 9.99 0.79
21719.66 36.79 11.74 0.76
23528.79 33.55 12.81 0.72
24686.86 26.26 12.34 0.68
25194.50 29.93 13.87 0.68
26943.83 25.33 15.07 0.63
27098.09 21.11 15.62 0.57

Table 6.2: Convex coverage set for ρ = 0.6.

A second observation is that the positive reviews tend to increase as revenue decreases,
and negative reviews tend to decrease as revenue decreases. This is in concordance with
the set-up of the scenarios, where higher prices lead to less positive and more negative
reviews. It can also be seen in Figures 6.7 and 6.8. However, there is no strict increase or
decrease. This can be explained by the trade-off between positive and negative reviews
with respect to revenue. There is however a difference in behaviour between positive and
negative reviews. At first positive reviews tend to increase as revenue decreases. Policies
are selected that give slightly less revenue, but provide more positive reviews and less
negative reviews. However, at some point revenue can only be increased more if at times
no products are offered, to the point that no products are offered any more. This leads
to the zero-solution: if no products are offered, no revenue is earned and no reviews are
given. This in fact is an optimal policy when only negative reviews are the objective. A
side-effect is that at some point, when revenue decreases, also positive reviews decrease,
because of lack of offer. For example, consider the solution with 12513.99 revenue, 42.88
positive reviews, and 9.28 negative reviews; compared to revenue of 7493.76, 33.01 positive
reviews, and 3.75 negative reviews. Note that the reviews score does increase from 0.82
to 0.90.
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Figure 6.7: Convex coverage set plot
of revenue and number of positive re-
views.

Figure 6.8: Convex coverage set plot
of revenue and number of negative re-
views.

Figure 6.9: Convex coverage set plot
of number of positive and negative re-
views.

Figure 6.10: Plot of revenue and review
ratio resulting from CCS.
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6.5.2 Equilibria

An important application of the revenue-review trade-off model is to make decisions now
that positively influence future purchase behaviour and revenues. By sacrificing revenue
now in order to get better reviews, future revenues can be increased substantially. One
way to do this is to consider the equilibrium strategies described in Section 6.3 (other
approaches that are both tractable and indicate how long-term revenue can be increased
are not known to the authors). Each of the four scenarios of the example of Section
6.2 is considered. The optimal revenue that results from the target review ratio can be
calculated using stochastic mixture policies on the convex coverage set of revenue and
reviews, as is shown in Section 6.3. For example, the equilibrium strategy for scenario
1 with ρ = 0.6 yields an expected revenue of 27027.18. Just optimising revenue, on the
other hand, leads to an equilibrium policy that yields an expected revenue of 26194.23. By
observing the policy space in Table 6.2, an initial revenue loss of 0.26% is incurred (from
27098.09 if solely revenue is optimised). However, on the long term this leads to a revenue
increase of 3.18%.

The question is what target review ratio will lead to maximal revenue in the long
term. Therefore the following experiment is conducted. For all four scenarios the total
expected revenues corresponding to the equilibrium policy are evaluated for a range of
target review ratios. For convenience, losses for some higher target reviews are omit-
ted. The results are presented in Figure 6.11. Observe that the curves are not smooth,
nor indeed is there a reason why they should be.
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Figure 6.11: Revenues corresponding to equilibrium policies.

The four scenarios give different results, though the prevailing observation is that there is
a lot to gain by optimising to target review ratio instead of solely optimising revenue. Sce-
nario 1, where both the effect of review ratio on purchases and of purchases on review
ratio are large, shows a structural increase in revenue of 11% when an optimal target
review ratio is selected. If the demand effect is small, but the effect of review probabilities
high, in scenario 2, then optimising to target review ratio leads to a 6% structural increase
in revenue. The other scenarios 3 and 4, with the effect of review probabilities low, show
a decent increase in revenue of about 2-3%.

Ye et alii (2011) found that a 10% increase in rating increases online bookings by more
than 5%. In terms of revenue, our example gives similar results. Scenario 1 induces a
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revenue increase of 10.66% with an increase in review ratio of 20.69%. The increase in
revenue is higher that in the results by Ye et alii (2011), but so is the increase in review
ratio. In scenario 2 a similar observation is made: 5.73% increase in revenue and 11.11%
increase in review ratio. Scenario 3 and 4, however, show slightly poorer results. Scenario
3 yields an increase of 3.36% in revenue with 8.62% increase in review ratio and scenario
4 an increase of 2.15% in revenue and 7.41% in review ratio. This can be explained by
the low impact of review ratio on demand in these scenarios.

6.6 Concluding Remarks

In this chapter a novel revenue management model is introduced that captures the trade-
off between revenue and reviews. Revenue management strategies influence the perception
of customers, which results in a changing review ratio. On the other hand, review ratio
influences buying behaviour. The formulated model captures the long-term effect of opti-
mising revenue according to a target review ratio.

A new solution method to approach a problem of such complexity is introduced to opti-
mise revenue in the long run. The methodology builds on recent developments in multi-
objective Markov decision process theory, and contributes to this body of literature. Be-
cause the policy space is restricted to policies where revenue is optimised such that the
target review ratio remains constant, the full problem can be reduced to a series of multi-
objective Markov decision problems.

Our numerical studies show how to interpret the solution space, the convex coverage set, or
a single multi-objective MDP in the series. Moreover, results of the equilibrium strategies
of the successive model show that revenue improvements of up to 11% are achievable if
reviews are taken into account in the optimisation process, instead of the sole objective
of revenue. All results, featuring different scenarios, suggest revenue increases of at least
2%. In practical terms for theatre, this leads to a significant increase in revenue that can
reach into the millions annually.

The results of this study have several implications that suggest topics for further re-
search. First, the model can be used to identify the effect of improving facilities of the
theatre to revenue and review ratios. Second, the model can be extended to a network set-
ting for applications with such structure, like hotels. However, this is not straightforward,
and it increases the dimensionality of the problem to the extend that is intractable. Next,
Chapter 7 introduces and analyses a choice-based network model that includes reviews in
the optimisation process.



CHAPTER 7

Choice-Based Network Revenue Management
under Online Reviews

This chapter proposes a choice-based network revenue management (RM) model that
integrates the effect of reviews. The dependency between reviews and revenue is two-
fold: customers write reviews based on their price/quality perception, and reviews im-
pact sales. A complicating factor in this model is that the effects of reviews are delayed,
e.g., by sacrificing revenue now in order to get better reviews, long-term revenue can
be increased. Faced by the complexity of the model, two heuristics are proposed, one of
which uses robust optimisation techniques. Numerical results show a 3.5-5.2% improve-
ment when reviews are taken into account. Moreover, the impact of reviews is greater
under low demand intensity than under high demand intensity.

7.1 Introduction

A recent development that impacts sales of numerous industries is that customers are
given the opportunity to share their experience with other potential clients via websites
like Booking.com, Expedia, or Tripadvisor. Examples of industries where this is com-
mon today are hotels, airlines, travel agencies, car rentals, and short-term storage space
leases. Evidence from literature shows that customers are highly influenced by reviews in
their purchasing process (Pan & Zhang, 2011; Park & Lee, 2009; Yoo & Gretzel, 2011). In
particular, negative information has relatively more impact than positive information
(Sparks & Browning, 2011); positive reviews improve the confidence and willingness to
buy at a hotel (Vermeulen & Seegers, 2009); and more recent reviews have more im-
pact than older reviews (Pavlou & Dimoka, 2006; Vermeulen & Seegers, 2009; Ye et alii,
2011). In order to increase demand it is therefore beneficial for a company to get more
positive reviews and try to avoid negative reviews. On the other hand, the price/quality
perception of the customer impacts the reviews. This study proposes a decision model
that maximises revenue in the long run in a network set-up, where reviews are implicitly
incorporated.

This chapter is based on Sierag (2016a).
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This study considers the problem of deciding which products should be offered at what
time, with the objective of maximising revenue, in a network setting where the demand
depends on past reviews and customer choice preferences are taken into account. In par-
ticular, the reviews are modelled as a feedback mechanism: on the one hand demand
depends on reviews, and on the other hand, reviews depend on the price/quality per-
ception of customers. This feedback mechanism was introduced in Chapter 6, where a
a single-leg choice-based RM problem under reviews is considered. In line with Chap-
ter 6, the focus is on reviews rather than ratings, since recent reviews impact sales and
ratings tend to remain more or less constant. Demand of future arrivals in the planning
horizon depends on past reviews as well as reviews that are released during the planning
horizon. This highly complex stochastic problem is intractable, and this chapter proposes
two heuristics to solve the problem. The first heuristic is a deterministic variant of the
problem, which is shown to be an upper bound to the stochastic counterpart and con-
verges to the optimal value when demand and capacity are scaled. The second heuristic
uses robust optimisation techniques to deal with uncertainty in reviews. Numerical results
in Section 7.5 show that taking reviews into account leads to a revenue improvement of
3.5-5.2%. Moreover, the results show that 1) reviews have more impact when the demand
is low; and 2) that small hotels are more effected by the review mechanism than larger
hotels.

This chapter builds on the work in Chapter 6, where we propose a similar feedback mech-
anism to deal with reviews in a single-leg environment. The solution methods of Chapter
6 cannot be extended to a network setting, and therefore this study is essential. This
chapter makes the following research contributions: 1) a model that incorporates reviews
in the optimisation process in a network setting (Section 7.2); 2) a deterministic variant
of the intractable stochastic problem, which is shown to be an upper bound and con-
verges asymptotically to the optimal revenue (Section 7.3); 3) Two heuristics to solve
the stochastic problem: one based on the deterministic problem and one based on robust
optimisation methods (Section 7.4); 4) numerical experiments indicating that including
the review feedback mechanism lead to higher long-term revenue (Section 7.5). Finally,
implications for research and practice are discussed in Section 7.6.

7.2 Stochastic Model

This section introduces the full stochastic problem of optimising long-term revenue in a
network setting under customer choice behaviour and reviews. For clarity of presenta-
tion, this chapter is written in the context of hotels, since the combination of reviews
and the network structure, in the form of multiple night stays, is very typical for this
branch. However, the models and analysis are more general and apply to all network RM
problems where demand depends on reviews and reviews depend on the experience of the
customer.

7.2.1 Model Description

Consider a hotel with identical rooms. The hotel manager wants to sell the rooms for
m ∈ N nights. The capacity Ci for night i ∈ {1, . . . ,m} is allowed to differ per night,
for example due to renovation of some rooms. The firm sells the rooms in the form of
n products, where product j ∈ N = {1, . . . , n} is a combination of one or more rooms,
possibly for multiple nights, a reward rj , and certain conditions (like a cancellation pol-
icy). In the hotel context used in this chapter, the room consumption is determined by
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an arrival night i and a length of stay (LOS). The reward rj may include the expected
revenue from the room price and other sources of revenue, such as food and beverage,
spa and fitness, and casino revenues. Let A = (aij) ∈ Rm×n be the incidence matrix of
the products and rooms, where aij is the number of rooms of night i that is consumed
by product j. Furthermore, a customer that purchased product j has a probability of qpj
that he will write a positive review about its purchase and an independent probability of
qnj that he will write a negative review. Hence he will write both a positive and negative
review with probability qpj q

n
j . Parameters are chosen such that qpj + qnj + qpj q

n
j ≤ 1, so

the probabilities are well defined. Note that in practice it is natural that customers write
both positive and negative reviews at the same time, as a customer can write about both
positive and negative aspects of the experience.

The products are sold continuously over T time units. Arrival nights occur also within
the booking horizon, so products may perish before the end of the booking horizon is
met. At certain moments in time Td (1 ≤ d ≤ D, D ∈ N) the reviews are updated: all
products for which consumption ended after Td−1 but before or at Td, denoted by the set
Nd ⊂ N , are published at time Td. The period between Td−1 and Td is denoted by period
d. Let Qpd and Qnd be the number of positive reviews and negative reviews, respectively,
that are published at time Td (with T0 = 0, the start of the booking horizon). The initial
positive and negative reviews are given by Qp0 and Qn0 , respectively.

Demand is influenced by reviews, either positive or negative (Pan & Zhang, 2011; Park
& Lee, 2009; Sparks & Browning, 2011; Vermeulen & Seegers, 2009; Yoo & Gretzel,
2011). More recent reviews have more impact on demand than older reviews (Pavlou &
Dimoka, 2006; Vermeulen & Seegers, 2009; Ye et alii, 2011). To capture this effect, in
accordance with Chapter 6, the positive and negative reviews are discounted by a factor
α ∈ (0, 1). The discounted reviews for time Td are given by

Q̃pd :=

d∑
d′=0

αTd−Td′Qpd′ , Q̃nd :=

d∑
d′=0

αTd−Td′Qnd′ . (7.1)

Assume that customers in period d arrive according to a Poisson process with rate λd,
where λd depends on the the reviews:1

λd = (λ̄d + βpQ̃pd−1 + βnQ̃nd−1)+, (7.2)

where λ̄d ∈ R is the base arrival rate and βp, βn ∈ R. The operator (x)+ is defined by
(x)+ = max{0, x}, which enforces demand to be non-negative. In this set-up, the LOS and
arrival night are included in the product j ∈ N . In accordance with Vermeulen & Seegers
(2009) it is assumed that positive reviews have positive effect on demand and negative
reviews have a negative effect on demand, which translates to βpd > 0 and βnd < 0. In line
with findings in literature (Sparks & Browning, 2011), the effect of negative reviews is
greater than positive reviews: βpd < −βnd .

The results of this chapter can be derived when the parameters βp, βn depend on time, but
for clarity it is assumed that βp, βn are equal for all time periods. Let qj = βpqpj + βnqnj ,

let Qd = βpQpd + βnQnd , and let Q̃d = βpQ̃pd + βnQ̃nd . Then the demand can be rewritten
as

λd = λ̄d + Q̃d−1.

1It is possible to let the arrival rate λd be time dependent. The analysis and results remain the same,
but for ease of notation a constant arrival rate is used throughout this chapter.
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Continuously in time the hotel manager decides which subset S ⊂ N to offer to arriving
clients. According to this offer set S an arriving client purchases product j with probabil-
ity Pj(S) or declines from purchasing anything with probability P0(S). In accordance with
Markov decision process literature a feasible solution π to the problem at hand is called a
policy. Let Π be the set of all policies, where non-deterministic policies are allowed. The
policy π∗ ∈ Π that optimises expected revenue is called an optimal policy.

7.2.2 Problem Formulation

Let N(Sπ(t)) ∈ Nn be the stochastic process of the vector of purchases at time t under
policy π, where Sπ(t) ⊂ N is the offer set corresponding to π. The problem statement is
then given by

max
π∈Π

E

[∫ T

0

r>N(Sπ(t))dt

]

s.t.

∫ T

0

AN(Sπ(t))dt ≤ C,

Sπ(t) ⊂ N, ∀t ∈ [0, T ].

(7.3)

To solve this problem, time is discretised into T time units, such that the probability that
more than one event occurs in one time unit is small. The probability that a customer
arrives in time period t (1 ≤ t ≤ T ) is given by λt. Define the state space by X × Y ,
where X is the set of all possible occupation scenarios, i.e., X = {x ∈ Nm |x ≤ C }, and
Y is the set of all possible outcomes for reviews. Since there are only a finite number of
decision moments, X × Y is finite, however large. Note that λt depends on the reviews
y; therefore, denote the arrival probability by λt(y), y ∈ Y . Denote the revenue to go
at time t in state (x, y) by Vt(x, y). Under these considerations an optimal policy can be
found by solving the following Bellman equation:

Vt(x, y) = max
S⊂N

λt(y)
∑
j∈S

Pj(S)
[
rj + Vt+1(x+Aj , y + qj)− Vt+1(x, y)

]
+ Vt+1(x, y).

(7.4)

The high dimensionality of the state space (which requires at least m dimensions to keep
track of the consumed rooms per night) makes this stochastic problem intractable, similar
to other choice-based network studies (Bront et alii, 2009; Hosseinalifam et alii, 2016; Liu
& van Ryzin, 2008; Meissner & Strauss, 2012; Meissner et alii, 2013; Strauss & Talluri,
2012). Therefore, approximations have to be considered. The next sections are dedicated
to performance measures, including an upper bound, and two heuristic approaches.

7.3 Deterministic Model

This section proposes a deterministic counterpart of the stochastic problem (7.3). The
objective value is shown to be an upper bound to the stochastic problem. Furthermore,
the upper bound is shown to be asymptotically tight when demand and capacity are
scaled.
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7.3.1 CRLP Formulation

Consider the deterministic variant of the stochastic problem, where demand and reviews
are deterministic and continuous variables. Under deterministic demand a mixed inte-
ger linear program formulation is proposed, called choice-based review linear program
(CRLP). In other studies concerning choice-based network RM a similar linear program
is derived, called choice-based deterministic linear program (CDLP) (Gallego et alii, 2004;
Liu & van Ryzin, 2008). However, the CRLP does not follow directly from the CDLP, since
the demand parameter is not a constant any more, but depends on the past reviews. A
crucial step in deriving the CRLP is the introduction of the decision variables x(S, d),
representing the total number of clients that are offered set S during period d. This con-
trasts earlier work (Gallego et alii, 2004; Liu & van Ryzin, 2008), where t(S) is used as a
decision variable, representing the time that set S is offered rather than the total number
of clients that was offered set S. While using t(S) is an appropriate decision variable in
their studies, a direct implementation to the review model leads to a non-linear program.

The objective of CRLP is the expected reward. A customer who is offered set S ⊂ N leads
to an expected reward of

∑
j∈S rjPj(S). With x(S, d) as decision variables, the objective

of CRLP is then given by

D∑
d=1

∑
S⊂N

x(S, d)
∑
j∈S

Pj(S)rj . (7.5)

When the offer set S ⊂ N is offered to a customer, the expected resource consumption is
equal to AP (S). The capacity constraints are therefore given by

D∑
d=1

∑
S⊂N

x(S, d)AP (S) ≤ C. (7.6)

To model the demand and time constraints, observe that the total demand over all sets
S ⊂ N offered during period d is upper bounded by the demand rate of period d times
the length of period d: ∑

S⊂N
x(S, d) ≤ (λ̄d + Q̃d−1)+(Td − Td−1). (7.7)

Note that the demand rate is non-negative. For ease of notation, assume that Td−Td−1 = 1
for all 1 ≤ d ≤ D. Using the definition of discounted reviews this then leads to2

∑
S⊂N

x(S, d) ≤

(
λ̄d + αd−1Q0 +

d−1∑
d′=1

αd−d
′−1

∑
j∈Nd′

∑
S⊂N

d′∑
d′′=1

x(S, d′′)Pj(S)qj

)+

, (7.8)

for all 1 ≤ d ≤ D. For notational convenience, let λ̃d = λ̄d + αd−1Q0, and define
µ : {S ⊂ N} × {1, . . . , D} × {1 . . . , D} → R by

µ(S, d, d′) :=
∑
j∈S

Pj(S)qj

(
d−1∑
d′′=d′

αd−d
′′−1I{j ∈ Nd′′}

)
, (7.9)

for all S ⊂ N and for all 1 ≤ d, d′ ≤ D. The constant µ(S, d, d′) can be interpreted as the
expected additional demand in period d per unit of demand in a previous period d′ that

2Note that αd−d′ has to be replaced with αTd−Td′ in Equation (7.8) when Td − Td−1 = 1 does not
hold.
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set S was offered. Hence µ(S, d, d′)x(S, d′) is the expected additional demand for period
d that follows from offering set S in period d′. The demand constraints (7.8) can now be
rewritten in a more convenient form:

∑
S⊂N

x(S, d) ≤

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)µ(S, d, d′)

)+

, (7.10)

for all 1 ≤ d ≤ D. The CRLP is then given by

max
x(S,d):

S⊂N,1≤d≤D

D∑
d=1

∑
S⊂N

x(S, d)
∑
j∈S

Pj(S)rj

s.t.

D∑
d=1

∑
S⊂N

x(S, d)AP (S) ≤ C,

∑
S⊂N

x(S, d) ≤

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)µ(S, d, d′)

)+

.

(7.11)

The demand constraints contain a maximisation function, such that the problem can be
solved as a mixed integer linear program (MILP). Mathematical software programs such
as CPLEX and Gurobi are capable of handling quite large MILP instances.

7.3.2 Upper Bound and Asymptotic Optimality

Let V CRLP be the optimal objective value of the CRLP (7.11) and let V ∗ be the optimal
objective value of the stochastic problem (7.3). Proposition 7.1 shows that V CRLP is an
upper bound to V ∗ (similar to Gallego et alii, 2004, Proposition 2, and Liu & van Ryzin,
2008, Proposition 1).

Proposition 7.1. V CRLP ≥ V ∗.

Proof. Let π∗ be an optimal policy of the stochastic problem (7.3) and let
Sπ∗(t,Ft) be the stochastic process of sets offered at time t under π∗ and Ft
the history of the system up to time t. Since π∗ is feasible to (7.3), it holds in
a path wise fashion that ∫ T

0

AN(Sπ∗(t,Ft))dt ≤ C,

and therefore the expectation is finite:

E

[∫ T

0

AN(Sπ∗(t,Ft))dt

]
≤ C <∞.

Note that AN(S(t)) is non-negative, so Fubini’s Theorem applies, with the
following result:∫ T

0

AE[N(Sπ∗(t,Ft))]dt = E

[∫ T

0

AN(Sπ∗(t,Ft))dt

]
≤ C.
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Next, define xπ∗(S, d) by

xπ∗(S, d) = E

[
λd

∫ Td

Td−1

I{Sπ∗(t,Ft) = S}dt

]
,

for all S ⊂ N and 1 ≤ d ≤ D, with

λd =

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)µ(S, d, d′)

)+

.

The expected number of clients that purchase product j is equal to the sum-
mation over S of the expected number of sales of product j, given the number
of clients that were exposed to set S:

D∑
d=1

∑
S⊂N

xπ∗(S, d)Pj(S) =

∫ T

0

E[Nj(Sπ∗(t,Ft))]dt ≤ C.

Therefore, the constraints of CRLP (7.11) are satisfied, and π∗ is a feasible
solution to CRLP (7.11). Furthermore, the objective values of the stochastic
problem (7.3) and CRLP coincide:

V ∗ = E

[∫ T

0

r>N(Sπ∗(t,Ft))dt

]
=

D∑
d=1

∑
S⊂N

xπ∗(S, d)
∑
j∈S

Pj(S)rj ,

Since xπ∗(S, d) is a feasible solution to CRLP, the corresponding objective
value is bounded by the optimal objective value V CRLP, which completes the
proof.

Consider the k-scaled problem instance, where demand, capacity, and initial reviews Qp0
and Qn0 are scaled by a factor k ∈ N, i.e., the demand rate equals kλ, the capacity vector
equals kC, and the initial reviews are given by kQp0 and kQn0 . Let V ∗k and V CRLP

k be the
optimal objective value of the k-scaled stochastic problem and CRLP, respectively. As
k →∞, the objective values of the stochastic and deterministic values converge to V CRLP,
which is shown in Proposition 7.2 below (adjusted to our model from Liu & van Ryzin,
2008, Proposition 2).

Proposition 7.2. lim
k→∞

1
kV
∗
k = lim

k→∞
1
kV

CRLP
k = V CRLP.

Proof. Let x∗(S, d) be an optimal solution to the unscaled CRLP problem
(7.11). The objective value of the k-scaled CRLP is equal to k times the objec-
tive value of the unscaled CRLP. Also, the constraints of the k-scaled CRLP
equal k times the constraints of the unscaled CRLP. Therefore, kx∗(S, d) is
an optimal solution to the k-scaled CRLP with optimal value kV CRLP, so the
second equality above holds.

Next, construct an optimal policy π ∈ Π for the k-scaled stochastic problem
from x∗(S, d) as follows. In period d, offer set S a deterministic amount of
time equal to

tπ(S, d) := x∗(S, d)/λd, (7.12)
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where λd is the deterministic demand rate given by

λd =

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)µ(S, d, d′)

)+

. (7.13)

This is the time that set S is offered during period d in the (k-scaled)
CRLP. The order that the sets are offered is arbitrary. Let Dk(S, d, t) be
the random vector of product demand under set S over t time units in the
k-scaled stochastic problem. So, for product j and offer-set S in period d,
Dk
j (S, d, tπ(S, d) is Poisson distributed with parameters x∗(S, d)Pj(S). Under

π not all demand is accepted, only the demand under kx∗(S, d)P (S) is ac-
cepted. Let Nπ(S, d) be the accepted demand according to policy π:

Nπ(S, d) := min{Dk(S, d, tπ(S, d)), kx∗(S, d)P (S)}. (7.14)

Due to the demand constraint of the k-scaled problem of the CRLP it holds
that

D∑
d=1

∑
S⊂N

ANπ(S, d) =

D∑
d=1

∑
S⊂N

Amin{Dk(S, d, tπ(S, d)), kx∗(S, d)P (S)}

≤ kC,

so π is an admissible policy for the k-scaled stochastic problem. The objective
value equals

D∑
d=1

∑
S⊂N

r>Nπ(S, d) =

D∑
d=1

∑
S⊂N

r>min{Dk(S, d, tπ(S, d)), kx∗(S, d)P (S)}.

Letting k →∞ this leads to

lim
k→∞

1

k

D∑
d=1

∑
S⊂N

r>min{Dk(S, d, tπ(S, d)), kx∗(S, d)P (S)} (7.15)

= lim
k→∞

D∑
d=1

∑
S⊂N

r>min{1

k
Dk(S, d, tπ(S, d)), x∗(S, d)P (S)}. (7.16)

For all j ∈ N , Dk
j (S, d, tπ(S, d)) has the same distribution as∑k

y=1Dj,y(S, d, tπ(S, d)), with Dj,y(S, d, tπ(S, d)) ∼ Pois(x∗(S, d)Pj(S))
i.i.d. for all 1 ≤ y ≤ k. By the law of large numbers the sequence
1
kD

k(S, d, tπ(S, d)) then converges to x∗(S, d)P (S) a.s. as k → ∞. Since the
minimisation function is continuous, the continuous mapping theorem can be
applied, which yields

lim
k→∞

D∑
d=1

∑
S⊂N

r>min{1

k
Dk(S, d, tπ(S, d)), x∗(S, d)P (S)}

=

D∑
d=1

∑
S⊂N

r>min{x∗(S, d)P (S), x∗(S, d)P (S)}

=

D∑
d=1

∑
S⊂N

x∗(S, d)r>P (S)

= V CRLP.
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This completes the proof.

7.4 Solution Methods

In this section two solution methods are proposed to solve the stochastic problem
(7.3). The first method, called CRLP, uses the solution to CRLP (7.11) as a strategy. The
second method is motivated by the fact that the demand rate depends on past reviews,
which entails uncertainty. A robust optimisation formulation is proposed to deal with this
uncertainty, with the goal of providing an improved solution method. Finally, this section
is concluded with a discussion on some computational challenges and opportunities.

7.4.1 CRLP Approximation

The first heuristic is a straightforward implementation of the outcome of CRLP. Let
x∗(S, d) be an optimal solution to CRLP. In term of time units, the optimal strategy
x∗(S, d) translates to offering set S for a total of t(S, d) = x∗(S, d)/λd time units in
period d. Since the strategy assumes deterministic demand, it dictates no specific order
in which the sets are offered. Moreover, set S does not have to be offered continuously
for t(S, d) time units in period d: it may be offered a couple of different time segments
within period d, as long as the total offer time equals t(S, d).

However, in the stochastic model demand is stochastic while the capacity is limited. Each
time a customer arrives, a purchase can only be accepted if the remaining capacity al-
lows for it. By fixing the order in which sets S are offered in period d, for example by
lexicographical ordering or ordering by expected revenue, products from sets S that are
of higher order will be more likely to be purchased than lower order products, since by
the time the lower order is reached, less capacity remains. This leads to a bias towards
products of offer sets on top of the list and differs from core strategy of CRLP. An or-
dering might have a positive impact on performance, but this is not a straightforward
process in general. Therefore, to overcome this problem and keep as close to the CRLP
strategy as possible, a randomisation of offer sets is applied, in combination with splitting
the period t(S, d) in smaller parts. That is, the offer time t(S, d) is split into K periods
tk(S, d) = t(S, d)/K (1 ≤ k ≤ K), such that the total time of offering set S in period d
still equals t(S, d). Then a random ordering is applied to all time segments tk(S, d) of all
offer sets, per period d.

7.4.2 Robust CRLP

A crucial aspect of reviews is their impact on future demand. The CRLP assumes that
the reviews are deterministic, and the CRLP approximation described in the previous
section assumes that the demand rates are known. However, due to the stochasticity of
the reviews, the actual demand rates may fluctuate. To overcome this problem, a robust
version of the CRLP is proposed, where uncertainty is assumed in the outcome of the
reviews. In particular, consider the demand constraint of CRLP (7.11):

∑
S⊂N

x(S, d) ≤

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)µ(S, d, d′)

)+

. (7.17)
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The demand in this constraint heavily depends on the outcome of the reviews, in the
form of µ(S, d, d′), which is stochastic. Small changes in the outcome of the reviews lead
to different demand rates. To take this into account, assume that there is uncertainty in
the parameters µ(S, d, d′). For convenience, write µ(S, d, d′) in terms of its nominal value
µ̄(S, d, d′) ∈ R and a primitive factor ζ(S, d, d′) ∈ R:

µ(S, d, d′) = µ̄(S, d, d′) + ζ(S, d, d′). (7.18)

The uncertain parameter ζ = {ζ(S, d, d′)} is assumed to lie in an uncertainty set

Z ⊂ {S ⊂ N} × {1, . . . , D} × {1, . . . , D}. (7.19)

In Ben-Tal et alii (2009) it is shown that the uncertainty can be approached constraint-
wise. The robust formulation of constraint (7.17) can then be reformulated as

∑
S⊂N

x(S, d) ≤

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)
[
µ̄(S, d, d′) + ζ(S, d, d′)

])+

, (7.20)

for all ζ ∈ Z.

The choice of the uncertainty set Z impacts the tractability of the program. Tractable for-
mulations of the robust counterpart for several standard uncertainty regions are provided
by Ben-Tal et alii (2009). Although the robust counterparts of those standard uncertainty
regions are denoted as tractable, some still involve solving non-linear programs, and of-
ten the number of constraints increases. In case of the CRLP, tractability is already an
issue. Under these deliberations, consider the interval/box uncertainty set Z∞, given by

Z∞ = {ζ | ‖ζ‖ ≤ ρ} , (7.21)

which leads to the following robust counterpart (see Ben-Tal et alii, 2009):3

∑
S⊂N

x(S, d) ≤

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)
[
µ̄(S, d, d′)− ρ

])+

. (7.22)

The advantage of this uncertainty region is that the constraints remain linear and the
number of constraints does not increase. However, using the same ρ for all variables is
very conservative. Therefore we propose the following uncertainty set:

Z = {ζ ||ζ(S, d, d′)| ≤ ρ(S, d, d′)} , (7.23)

with ρ(S, d, d′) > 0, S ⊂ N , 1 ≤ d, d′, D. Under this uncertainty region the robust
counterpart becomes

∑
S⊂N

x(S, d) ≤

(
λ̃d +

∑
S⊂N

d−1∑
d′=1

x(S, d′)
[
µ̄(S, d, d′)− ρ(S, d, d′)

])+

. (7.24)

This adaptation of the interval/box uncertainty region is conservative but has two main
advantages. First, it leads to a MILP which is tractable in the case of CRLP: no new
integer variables are added and the number of constraints of the robust CRLP remains
the same. Second, the nominal values µ̄(S, d, d′) may very from each other in orders of
magnitude, but Z can take this into account by setting the bounds ρ(S, d, d′) relatively
to the nominal value µ̄(S, d, d′).

3Note that |x(S, d)| = x(S, d), since x(S, d) ≥ 0.
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7.4.3 Computational Challenges

The CRLP hasD2n decision variables andD+m constraints. With an exponential number
of decision variables in n this problem is intractable, even for modest sizes. However,
certain conditions on demand and branch-and-price techniques can be used to attempt to
solve the problem. This paragraph examines both techniques in context of CRLP (7.11).

Segmentation under Disjoint Consideration Sets

An important step in improving the tractability of CRLP is to make assumptions on
the demand that reduce the amount of decision variables. These assumptions may follow
naturally from the problem at hand, for example from segmentation of customers. Segmen-
tation is an important aspect of RM and one of the first steps of a RM implementation
(Talluri & van Ryzin, 2004b, p. 579-585). Assume that customers are partitioned into
|L| ∈ N segments, where L is the set of segments and each segment l ∈ L has its own
characteristics and preferences. According to these characteristics and preferences, the
hotel can target a segment l ∈ L by offering them certain products Sl. Customers may
be segmented in such a way that products can be offered solely to one segment, with-
out being exposed to another, through different booking channels. For example, transient
clients might use booking websites, while group reservations are made through agencies
directly with the hotel; and in Chapter 2 it is shown that business and leisure customers
can be segmented by day of the week and time of the day: business clients tend to make
a reservation during weekdays between 8:00 and 17:00, while leisure clients tend to make
reservations during weekdays from 17:00 and in the weekend.

Now the assumption that reduces the number of decision variables is that segments have
disjoint consideration sets Nl, l ∈ L. That is, a customer from segment l ∈ L only
considers a subset Nl ⊂ N of the products, with Nl ∩ Nk = ∅ for all l, k ∈ L. Although
room consumption may be overlapping, the decision variables x(S, d), for all S ⊂ N
and for all 1 ≤ d ≤ D, can be replaced by x(Sl, d), for all Sl ⊂ Nl, l ∈ L, and for all
1 ≤ d ≤ D. This reduces the number of decision variables from D2n to D

∑
l∈L 2|Nl|, a

significant reduction. If the consideration sets Nl are of reasonable size, the number of
decision variables can be contained and CRLP is tractable.

In other choice-based RM models, such as Kunnumkal & Topaloglu (2008), Liu & van
Ryzin (2008), Meissner & Strauss (2012), and Vossen & Zhang (2015), a special case
of segmentation under disjoint consideration sets is discussed and used to validate the
models. In these works, the multinomial logit model is used as a choice model, and to
build on these works the same choice model is used in the numerical section 7.5 of this
chapter. However, we stress that the reduction of decision variables holds for any choice
model in combination with segmentation under disjoint consideration sets.

Branch-and-Price

When the number of decision variables of CRLP is too large, branch-and-price tech-
niques can be used to attempt to solve CRLP. Branch-and-price is a column generation
technique combined with branching for MILPs and is strongly related to branch-and-
cut methods. See Barnhart et alii (1998) for a general discussion of branch-and-price
and Cóccola et alii (2015) for an application of branch-and-price to a ship routing and
scheduling problem. In the following, a sketch of a branch-and-price application to CRLP
is given.
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The branch-and-price algorithm consists of two aspects: 1) a branching tree to deal with
the integer variables, and 2) a column generation procedure, executed in each node of the
tree, to determine whether to branch or to stop, according to some decision rules. The col-
umn generation procedure gives a local upper bound (LUB) for each node in the branching
tree. If the strategy of this LUB is feasible to CRLP, then the LUB is compared with the
global lower bound (GLB), the best feasible solution to CRLP found so far. If the LUB is
lower than the GLB (whether it is feasible to CRLP or not), then no optimal solution will
be found in this branch and it is explored no more. If the LUB is not feasible to CRLP
and larger than the GLB, then this node is explored further by splitting it into two child
nodes according to some decision rule.

In particular, the column generation procedure in a node of the branching tree is as
follows. Instead of solving the CRLP master problem (MP) (7.11), a subset Nd ⊂ N ,
d = 1, . . . , D, of offer sets is considered as decision variables (columns of CRLP). This
reduced master problem (RMP) is tractable when |Nd| is substantially smaller than |N |,
for all d = 1, . . . , D. The LP relaxation of the RMP leads to dual variables π ∈ Rm
and ρ ∈ RD, corresponding to the capacity constraints and demand constraints, respec-
tively. Next, consider the reduced costs that follow from the dual solution of the relaxed
RMP, of all columns of the MP that are not in RMP. If any of those columns has positive
reduced costs, one of those columns is selected and added to the RMP. To determine
which column has positive reduced costs and can be added to the RMP, the following
column generation sub-problem has to be solved:

max
S⊂N

1≤d≤D

{
(r> − π>A)P (S)− ρd +

D∑
d′=d+1

ρd′µ(S, d′, d)

}
. (7.25)

If the optimal value of sub-problem (7.25) is negative (i.e., if there is no column with
positive reduced costs) and the relaxed RMP strategy is feasible to RMP (i.e, the relaxed
integer variables are integers), then the strategy/LUB is compared with the GLB. If it is
smaller than GLB, the exploration of this branch ends here.

Otherwise, if the optimal value of the sub-problem (7.25) is negative and the relaxed RMP
solution is not feasible to RMP, branching is applied to the integer variables. If the LUB
of the node is greater than GLB, then, according to some decision rule, an integer variable
is selected to construct the next step in the branching tree. Otherwise the search in this
branch ends here. This procedure is continued until an optimal strategy is found. The
process always converges since the branching tree is finite.

Other papers on choice-based network RM also discuss column generation techniques
(Gallego et alii, 2004; Liu & van Ryzin, 2008). However, they consider CDLP, which
a linear program without any integer variables. Those procedures cannot be applied to
CRLP, but the branch-and-price procedure described in this section can.

7.5 Numerical Results

This section provides some numerical experiments to illustrate the model and perfor-
mance of the solution methods. The first experiment focuses on the performance of the
robust solution method under different loads. The second experiment focuses on the
weight of review probabilities. The third experiment considers different hotel sizes. The
fourth and final experiment shows the performance under estimation errors of the demand
parameters.
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Suppose a manager wants to find a strategy for his hotel of size C ∈ N over an 8 week
period. After each week reviews are released, so D = 8. Assume that rooms are sold
over a 90-day booking horizon. For simplicity only two resource types per week are used,
by grouping weekdays together: resource type 1 represents Monday-Friday, resource 2
represents Friday-Monday. See Figure 7.1 for an illustration.

Mon Tue Wed Thu Fri Sat Sun

Product type 1: Weekdays Product type 2: Weekend

Product type 3: Week

Figure 7.1: The three different product types per week.

On these resources, three product types are constructed: product type 1 consumes one
unit of resource type 1, representing a midweek stay; product type 2 consumes one unit
of resource type 2, representing a weekend stay; product type 3 consumes one unit of
resource type 1 and one unit of resource type 2, representing a whole week stay. Each
product type has three price levels, see Table 7.1.

Product
Product type 1 2 3

1 (weekdays) 360 480 600
2 (weekend) 250 340 400
3 (week) 500 750 900

Table 7.1: Prices per product per product type.

An arriving customer is only interested in one product type in one particular arrival
week d (1 ≤ d ≤ 8). Hence customers can be segmented such that their consideration
set is restricted to the particular arrival week and product type. The base arrival rate
of customers for week d equals λ̄d = 2C. Within one week, the probability that an
arriving customer is interested in product type 1, 2, and 3 is equal to 1/2, 1/3, and 1/6,
respectively. Furthermore, assume that customers of each segment select a product based
on the multinomial logit model, where the MNL weights are given by (10, 7, 3, 4) (note
that the last entry represents the no-purchase option).

Regarding the reviews, assume that the positive and negative review probabilities equal
qp = (0.1, 0.05, 0.01) and qn = (0.01, 0.02, 0.05), respectively, for all product types. Let
α = 0.9 be the discount parameter and let β = (1, 1.5) be the parameter that measures
the impact of reviews on demand. The initial reviews are set to zero.

The solution methods that are used in the examples are CRLP and the robust CRLP. The
uncertainty parameters ρ(S, d) are defined by

ρ(S, d) = ρ|µ(S, d)|, (7.26)

where ρ ∈ R+ is fixed for all S ⊂ N and for all 1 ≤ d ≤ D. The robust CRLP method
under parameter ρ ∈ R+ is denoted by CRLPρ. CDLP is used as a benchmark. The
primary measure of performance is the expected revenue. A secondary objective is the
variation of revenue in terms of the coefficient of variation cv, which can measure the
robustness of the heuristic.

To analyse the impact of different problem sizes some scaling parameters are used for
hotel size, demand load, and review probabilities. These parameters are specified in the
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lf Method Revenue cv (%) % Opt. gap

0.6

UB 805698 0.00 0.00
CRLP 803539 5.75 0.27
CDLP 688235 5.73 14.58

CRLP0.05 803353 5.72 0.29
CRLP0.1 802974 5.74 0.34
CRLP0.2 803626 5.85 0.26
CRLP0.5 798323 5.84 0.92

CRLP1 787477 5.98 2.26

0.8

UB 1060989 0.00 0.00
CRLP 1037750 3.53 2.19
CDLP 916199 4.94 13.65

CRLP0.05 1037682 3.43 2.20
CRLP0.1 1037283 3.28 2.23
CRLP0.2 1035870 3.26 2.37
CRLP0.5 1027387 3.04 3.17

CRLP1 1032296 3.79 2.70

1

UB 1220873 0.00 0.00
CRLP 1187402 2.90 2.74
CDLP 1136718 3.72 6.89

CRLP0.05 1188385 2.83 2.66
CRLP0.1 1188001 2.76 2.69
CRLP0.2 1190194 2.65 2.51
CRLP0.5 1187481 2.24 2.74

CRLP1 1175339 1.99 3.73

1.2

UB 1326409 0.00 0.00
CRLP 1282403 2.34 3.32
CDLP 1251263 2.95 5.67

CRLP0.05 1283714 2.25 3.22
CRLP0.1 1283909 2.13 3.20
CRLP0.2 1284633 2.15 3.15
CRLP0.5 1286872 1.95 2.98

CRLP1 1282403 1.71 3.32

1.4

UB 1403950 0.00 0.00
CRLP 1355459 2.13 3.45
CDLP 1339087 2.68 4.62

CRLP0.05 1356163 1.99 3.40
CRLP0.1 1357059 1.98 3.34
CRLP0.2 1356214 1.80 3.40
CRLP0.5 1352999 1.68 3.63

CRLP1 1345883 1.73 4.14

Table 7.2: Performance of different heuristics under various demand loads lf .

appropriate examples. Simulations are used to approximate the expected revenues of the
different heuristics. The errors are within 0.5% of the stated values, with 95% confidence.

7.5.1 Demand Load

The first experiment validates the performance of the different heuristics under vari-
ous demand loads. The hotel size is set to C = 200 and demand is multiplied by a
load factor lf ∈ {0.6, 0.8, 1, 1.2, 1.4}. The applied heuristics are CRLP and CRLPρ for
ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. The results are presented in Table 7.2.

The solution methods behave differently under the different demand loads. Surprisingly,
an increase in demand load brings the optimality gaps of CRLP and CDLP closer to-
gether. One would assume that under higher loads the effect of reviews is much more
evident, which translates to a better performance of CRLP. A plausible explanation is
that the strategies of CRLP and CDLP are similar when the demand load is increased. If
demand is high, then it makes less sense to sacrifice revenue now in order to get better
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reviews, and higher demand, in the future: there will be enough demand anyway. How-
ever, when demand is low, then it is worth sacrificing some revenue now in order to get
higher demand in the future.

The robust solution methods perform quite well, in some cases even better than
CRLP. Also, the coefficient of variation of CRLPρ is generally lower than of CRLP. An
exception is at lf = 0.6, though the difference is small. Based on these observations,
CRLP0.5 is selected to be used in the other examples: it provides a lower cv than CRLP,
indicating that the solution is more stable; and the expected revenue does not deviate
that much from CRLP, and for lf = 1 it is equal (in the remaining example the demand
load is fixed to lf = 1).

7.5.2 Weight of Review Probabilities

This sections investigates the impact of the weight of the review probabilities. In an
environment with C = 200 rooms and no scaled load (see the previous experiment), the
review probabilities are multiplied with weight w ∈ {0.01, 0.1, 0.2, 0.5, 1, 2}. A low weight
implies a small effect of review probabilities, while a high weight implies a large effect of
review probabilities. The results are presented in Table 7.3.

CRLP CDLP CRLP0.5

w UB Rev cv %Gap Rev cv %Gap Rev cv %Gap
0.01 1165145 1154996 1.87 0.87 1154996 1.87 0.87 1154996 1.87 0.87
0.1 1170226 1148537 1.84 1.85 1153348 2.09 1.44 1149764 1.91 1.75
0.2 1178102 1153052 2.00 2.13 1151556 2.27 2.25 1153876 1.97 2.06
0.5 1197396 1168466 2.36 2.42 1144965 2.96 4.38 1165078 2.17 2.70

1 1220873 1187402 2.90 2.74 1136718 3.72 6.89 1187481 2.24 2.74
2 1281146 1232147 3.09 3.82 1115901 5.02 12.90 1223037 1.84 4.54

Table 7.3: Performance of different heuristics under various weights w of review probabili-
ties.

The results show that the weight of the review probabilities impacts the performance. For
the low values of w = 0.01 the performances of all heuristics give the same results. CRLP
outperforms CDLP in all other cases, with the surprising exception of w = 0.1. CRLP0.5

performs better than CRLP for small weights, but when the weight increases CRLP
performs better in terms of expected revenue and worse in terms of variation.

7.5.3 Hotel Size

In this experiment the hotel size is varied as C ∈ {50, 100, 200, 500, 1000}, while the other
parameters remain fixed. The results are presented in Table 7.4.

CRLP CDLP CRLP0.5

C UB Rev cv (%) %Gap Rev cv (%) %Gap Rev cv (%) %Gap
50 305218 287855 5.35 5.69 278054 6.44 8.90 288752 5.07 5.39

100 610436 586188 4.11 3.97 563560 4.98 7.68 587729 3.42 3.72
200 1220873 1187402 2.90 2.74 1136718 3.72 6.89 1187481 2.24 2.74
500 3052182 3000490 1.84 1.69 2859800 2.58 6.30 2991797 1.22 1.98

1000 6104363 6030491 1.28 1.21 5731378 1.88 6.11 5999069 0.75 1.72

Table 7.4: Performance of heuristics under different hotel sizes C.

We make two main observations, apart from the fact that CRLP and CRLP0.5 outperform
CDLP for all hotel sizes, both in terms of expected revenue (by 3.5-5.2 percent) and
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variation. First, the method that performs best depends on the hotel size: for small
hotels, with C = 50 and C = 100, CRLP0.5 outperforms CRLP in terms of both revenue
and variation. On the other hand, for large hotels, with c = 500 and C = 1000, CRLP
provides higher expected revenue but CRLP0.5 provides lower variation. For small hotels
it is therefore beneficial to use the robust CRLP method, while large hotels need to decide
on the trade-off between revenue and variation. As a large hotel can bare more risk due
to its large volume, the CRLP method will lead to higher revenues in the long run.

A second observation is that the optimality gap and variation decrease as the hotels
size increases. There are two forces at work that could explain this behaviour. First, by
Propositions 7.1 and 7.2, the upper bound is larger than the optimal value, and converges
to the optimal value as the hotel size and demand increase. Second, the CRLP heuristic
might perform better as hotel size and demand increase. In both cases the difference
between the upper bound and CRLP gets tighter.

7.5.4 Estimation Error

In this experiment the performance of the heuristics is measured under estimation er-
rors of demand. The strategies of the heuristics are evaluated using the current param-
eters, but the actual demand is assumed to deviate from λ̄d by a factor of u ∈ R+. In
each simulation, u is drawn from a uniform distribution: u ∈ Unif[1 − ū, 1 + ū], with
ū ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. The results are presented in Table 7.5.

CRLP CDLP CRLP0.5

ū Rev cv (%) %Loss Rev cv (%) %Loss Rev cv (%) %Loss
∞ 1187200 2.89 0.00 1136084 3.78 4.31 1187561 2.21 -0.03

0.01 1187586 2.84 -0.03 1135729 3.76 4.34 1187495 2.26 -0.02
0.02 1187304 2.95 -0.01 1136061 3.84 4.31 1187025 2.40 0.01
0.05 1184460 3.44 0.23 1134494 4.43 4.44 1186081 2.77 0.09
0.1 1178394 4.82 0.74 1131404 5.88 4.70 1181261 3.97 0.50
0.2 1158335 8.49 2.43 1117748 9.67 5.85 1162424 7.45 2.09
0.5 1078115 21.06 9.19 1059288 22.12 10.77 1090038 19.90 8.18

Table 7.5: Performance of heuristics under estimation errors.

The results show that CRLP is quite robust in the sense that the performance does
not suffer too much in presence of estimation errors. For estimation errors of up to 5%
the revenue loss compared to perfect knowledge does not deviate too much, and in fact
increases a little bit (although this might be caused by simulation errors). For all values
of ū the variation is lowest for CRLPρ. This is expected, as the robust solution method
takes uncertainty into account. However, when the uncertainty is too big, with ū = 0.5,
all methods do not perform well.

7.6 Concluding Remarks

The main conclusion is that online reviews have a huge impact on revenue. This study
introduces a choice-based network RM model that incorporates reviews in a feedback
mechanism: on the one hand demand is impacted by reviews, and on the other hand,
reviews depend on the price/quality perception of customers. Including reviews in the
decision process can lead to a significant increase in revenue.

The full stochastic problem cannot be evaluated for practical purposes, a common problem
in choice-based network RM, because of the network structure and because the problem
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has to keep track of the reviews. To this extent a deterministic variant of the problem is
proposed. The deterministic variant serves as an upper bound to the stochastic problem,
and converges to the optimal stochastic value when demand and capacity are scaled.

Two heuristics are proposed to solve the problem: one based on the deterministic variant
and a robust optimisation approach, where the outcome of reviews is assumed to be
uncertain. Both heuristics show a significant improvement of 3.5-5.2% over the benchmark,
which does not take into account reviews. Two insightful results from the numerics in
Section 7.5 are that considering reviews in the decision process has more impact when
demand is low compared to when demand is high; and that small hotels are more effected
by the review feedback mechanism than larger hotels. Two other core advantages make the
heuristics an effective tool for practitioners: both heuristics can be evaluated efficiently,
and the robust solution method reduces the risk that comes with estimation errors.

The remainder of this section addresses two important aspects of choice-based network
RM under reviews. First, opportunities and challenges of various application areas are
discussed. Second, as a topic for further research, the value of dynamic strategies is
highlighted, as well as challenges to acquire such strategies.

7.6.1 Application Areas

The choice-based review model can be applied in many relevant areas. Hotels, airlines,
travel agencies, rental cars, and short-term storage space leases have a network structure
and sales are highly influenced by recent reviews. Websites like booking.com, hotels.com,
tripadvisor, airlinequality.com, rentalcars.com, and Yelp assist customers in their decision
process by offering reviews of the various options of companies and products.

The effect of reviews on demand differs per industry. In some industries, like hotels, the
reviews impacts the demand of the individual property more than the brand itself. This
is due to the fact that ratings differ per property of the same branch, and for a property
only corresponding reviews are listed. In other industries, on the other hand, like airlines,
brands are rated rather than individual flight legs.4 The effect of a review of a flight leg
therefore impacts the whole fleet. One way to deal with this is joining the whole fleet
together in an optimisation problem, such that the effects of reviews over multiple flight
legs is accounted for. However, this leads to intractability issues of biblical proportions. A
tractable approach would be to optimise local fleets, where the effect of reviews from
flight legs outside the local fleet are accounted for by forecasts.

Applications of reviews to RM that where a network structure is absent, or where booking
horizons do not overlap, are treated in Chapter 6.

7.6.2 Further Research

As this is a pioneering study on choice-based network RM under reviews, investigating
improved solution methods to reduce the optimality gap is a promising future direction. In
particular, the heuristics described in this study are of static rather than dynamic na-
ture. However, other choice-based RM studies have shown an improvement in performance
when dynamic strategies are used rather than static strategies (e.g., see Liu & van Ryzin,
2008; Maglaras & Meissner, 2006). However, most studies use only the current state of
reservations to decide on an offer set, and clearly not the current state of reviews. This
is exactly why a straightforward implementation of such strategy most likely will fail: it

4As a hybrid, car rental sites rate the brands, but tend to show reviews related to the pickup location.
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does not take into account the crucial effect of reviews, leading to a downwards spiral of
decreasing reviews and decreasing demand.

Decomposition methods, like in Liu & van Ryzin (2008) and Talluri & van Ryzin (2004b,
p. 100-108), solve the problem of the huge state space of the full dynamic problem by
solving a number of single-night stay sub-problems. However, in review context, these
sub-problems would still be intractable if reviews are to be taken into account. The main
challenge is to develop a novel method that incorporates the reviews in the decision
process without blowing up the state space.



Summary and Conclusion

This dissertation proposed and analysed several revenue management models, with focus
on the effects of cancellations, overbooking, customer purchase behaviour, and reviews,
in presence of flexible products and group reservations in a network setting. Chapter 2
provided exploratory data analysis of an independent Dutch hotel, demonstrating how
one should analyse client segment mix, the nature of demand, and effect of cancellations
and group reservations, amongst others. The results showed that a major part (21.71%)
of the reservations are cancelled, which has a big impact on revenues. Motivated by this,
in Chapter 3 we proposed a single-leg revenue management model that takes into account
cancellations and overbooking along with purchasing behaviour of customers. A dynamic
programming formulation to solve the discretised Markov process suffers from the curse
of dimensionality, since it has to keep track of the purchases of different product types.
Therefore, three heuristics were proposed, each appropriate under different assumptions.
Numerical results revealed that not taking cancellations into account can lead to a revenue
loss of up to 20%.

Another result from the data analysis is that demand follows a Poisson Process, which
implies relatively more uncertainty in demand for small hotels than for larger hotels.
Therefore, revenue optimisation models, which generally attempt to optimise the expected
revenue, should take this uncertainty into account, e.g., by using robust optimisation tech-
niques. Chapter 4 (and Section 7.4) discuss robust optimisation techniques for revenue
management models. Chapter 4 is devoted to a robust solution method for the single-leg
choice-based RM model of Chapter 3. The uncertainty in customer purchasing proba-
bilities is modelled using a φ-divergence measure, and tractable reformulations of robust
counterparts are presented. A numerical study implies that using the robust solution
method to model uncertainty in demand, e.g., due to estimation errors or the distribution
of demand, can lead to significantly higher revenues than when the nominal solution is
used.

Chapter 5 presented a network RM model that allows flexible products, which are com-
mon practice in TV and online advertising, and show potential to increase revenues in
retailing and fast-moving consumer goods as well. Flexible products give the company
the flexibility to assign the customer close to consumption to a selection specific products,
as capacity allows. Moreover, since flexible products give the company this flexibility, it
can ask for a lower price, which attracts new customer segments. Hence flexible products
can lead to better capacity utilisation and higher revenues. The numerical studies endorse
this by showing an increase in revenue of up to 20% when flexible products are offered
alongside specific products.

A recent development that impacts revenue is the wide availability of reviews and online
ratings. Chapters 6 and 7 proposed RM methodologies that model the effect of reviews on
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demand and the effect of the price/quality perception of clients on writing reviews. This
feedback mechanism complicates the model, because demand depends on past reviews.
For instance, by sacrificing revenue now, long-term revenue can be increased. Chapter 6
proposes a single-leg model with a novel solution method, to model the effects of reviews
for amongst other theatres, concerts, sport events, or cinemas. The elaborate solution
method can unfortunately not be used in the extension to networks Therefore, in Chapter
7 two heuristics are proposed, one of which deals with uncertainty in demand by means
of robust optimisation. Results show a significant improvement in long-term revenue of
up to 11%. Two insightful results from the numerics in Section 7.5 are that considering
reviews has more impact when demand is low than when demand is high, relative to the
hotel size; and that small hotels are more effected by reviews than larger hotels.

The results in this paper motivate future studies where challenges and opportunities in
RM, observed by analysing practical instances and data, are exploited. The wide avail-
ability of data and technological advances provide great opportunities to perform research
on customer behaviour and price sensitivity, and to develop new product types to con-
quer different market segments. In particular I would like to point out the opportunities
of research on the effect of reviews on long-term revenue in collaborative consumption
platforms. Collaborative consumption is the coordination of people to share products
amongst relative strangers by means of the online sharing economy (Belk, 2014). Promi-
nent examples of shared products are temporary housing (e.g., Airbnb, Couchsurfing) and
transportation (e.g., Blablacar, Lyft, and Uber).

To continue in the spirit of the hospitality industry, consider the popular online mediation
platform Airbnb. Airbnb allows house owners to host travellers, by offering them (a part
of) their home (e.g., the whole house or a room) to spend the night, which otherwise
would accommodate nobody. For example, when a house owner travels he can rent the
house during that period to relative strangers; or a house owner can offer their guest
room to travellers. A cornerstone of Airbnb is their reputation system, where both house
owners and guests write reviews about one another and the stay itself (Edelman & Luca,
2014), which builds trust between house owners and guests. Guests are more willing to
stay at a stranger’s house when the house owner has a good reputation, and, vice versa,
house owners are more willing to accept a stranger in their home when he has a good
reputation.

House owners can offer competitive prices compared to established means of temporary
housing such as hotels and hostels. It is beneficial for Airbnb to increase their market
share, and pricing is an effective tool to reach this goal. Each property can be described by
a vector of perhaps hundreds of features, including the space, facilities, geographical loca-
tion; and demand may depend on many factors including seasonality, competitor prices,
and reviews (Javanmard & Nazerzadeh, 2016). With this vast amount of information at
hand, the field of RM has a great opportunity to grow by developing high-dimensional op-
timisation and statistical techniques that use this big data for accurate demand forecasts,
price sensitivity, and, finally, for optimising long-term expected revenues.
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