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Abstract

This article proposes a revenue management model that integrates reviews and ratings. The dependency

between reviews and revenue is two-fold: the content of a review depends on the product the customer

purchases, and reviews impact the demand. A complicating factor in this model is that the effects of

reviews are delayed, i.e., by sacrificing revenue now in order to get better reviews, long-term revenue can

be increased. Because the full planning problem of finding an optimal strategy for the proposed model is

intractable, a novel solution methodology is proposed to solve the problem approximately by restricting

the space of possible solutions to target review strategies. It is shown that target review strategies for

the full problem can be found by viewing the full problem as a series of multi-objective Markov decision

processes subproblems, and aiming for a target review ratio in the subproblems while optimising revenue.

Numerical studies show that taking reviews into account in this manner can lead to an increase in revenue

of up to 11% compared to the case where the sole objective is revenue.

Keywords: Multi-Objective Markov Decision Processes, Revenue Management, Online ratings, reviews

1. Introduction

A recent development that influences sales in various industries is the wide availability of reviews. For

example, customers who attended a play in a theatre are given the opportunity to share their experience

with other potential clients via websites like Tripadvisor. Research strongly suggests that reviews influ-

ence the buying behaviour of customers [9, 10, 26]. For instance, [18] show that ‘consumers seem to be

more influenced by early negative information’ and [11, 22, 25] show that more recent reviews have more

impact. It is therefore in the interest of the theatre to get good reviews and avoid bad reviews. Also,

the other way around, customer reviews are influenced by the price/quality perception of the customer
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[27]. This article presents the first study that proposes a decision-theoretic model that explicitly includes

reviews to maximise the revenue.

This article studies the problem of optimising revenue over multiple performances when demand depends

on reviews, and where cancellations, overbooking, and customer choice preferences are taken into account.

Moreover, the model contains a feedback mechanism: on one hand the creation of reviews depends on

the purchases, and on the other hand demand depends on reviews. The focus is on recent reviews instead

of rating, since rating tends to remain more or less constant, while customers are more influenced by

recent reviews, either positive or negative. Demand for a certain performance depends on reservations

of previous performances, due to the reviews that are released in the meantime. This makes it a hard

problem, suffering heavily from the curse of dimensionality. The approach of this article is to maximise

revenue while the ratio between positive and negative reviews remains constant, called target review

strategies1. Searching in the space of target review strategies is an approximation, yet even under these

circumstances finding an optimal solution is challenging. An elaborate though tractable solution method

is provided, using a multi-objective Markov decision process formulation.

This article builds on three research areas. The first research area is the work on choice-based assortment

problems, such as the work by [17, 19] (see [16] for an overview of literature in this area). The basic idea

is that customer preferences depend on the products that are offered, and the set of offered products

should be optimised accordingly. The second area is the work on e-word-of-mouth (eWOM), in particular

the effect of reviews on demand, and the effect of purchases on reviews. See for example the survey by

[25] for an overview of related literature. Studies often show that the impact of reviews is strong, though

no connection is made to optimise assortments accordingly. Closest to the work in this article is the

article by [4], where reviews are used to forecast box office revenues. However, the reviews are not used

to optimise revenue, and the creation of new reviews is not considered. The third research area is the

work on multi-objective Markov decision processes [14]. When it is not clear a priori what the relative

importance of each objective is and how the objectives interact, a set of different trade-offs between the

objectives is considered. Such a set is called a coverage set. In this article, a series of multi-objective

problems approximates an otherwise intractable problem.

This article makes the following research contributions: 1) a model that incorporates reviews in the op-

timisation process (Section 2); 2) an analysis of the model indicating that the full problem is intractable,

and an approximation as series of tractable multi-objective problems (Sections 3 and 4); and 3) numeri-

cal experiments indicate that taking reviews into account induces significantly higher long-term revenue

1Note that this is not the only possible solution approach. However,this solution has the advantage that it is tractable
and leads to large improvements in revenue as Section 5 indicates.
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than when solely revenue is optimised (Section 5). Finally, implications for research and practice are

discussed in Section 6.

2. General Model Description

The model is framed in the context of theatres. However, the model is more general and can be applied

to other single-leg experience-based products, like sports events or concerts, or the cinema. In general,

the approach can be used for any problem that can be modelled as a series of decision problems in which

the output of an earlier problem (partially) parameterises the next problem in the series.

Purchasing behaviour of theatre clients is influenced by reviews, and, on the other hand, the price (and

conditions) of the ticket influence customers that write reviews. By offering a lower price, for example,

the theatre can attract different market segments. Clients with a low budget might appreciate the play

better than high-end customers, and can lead to better reviews. By deciding which products to offer at

what time, depending on demand and availability, the theatre can control revenues as well as reviews.

In practice, theatres have multiple seating areas, similar to airlines and hotels, which have different

seating classes and room types. However, considering multiple seating classes complicates the structure

of the problem and distracts from the focus and core findings of this paper. Therefore, in line with

literature on hotel and airline RM [8, 17, 19], this paper studies the identical-seat single-leg approach to

focus on the challenges of reviews rather than the challenges of multiple seating areas.

Consider a theatre with C identical seats that wants to sell them for one or more plays on multiple

performances. In particular, assume a (possibly infinite) set I ⊂ N of future arrival dates, each with

booking horizon of T time units (selling seats of a particular performance only starts at T units before the

performance), 0 being the arrival time. Overbooking is allowed up to Cmax seats.2 Every customer has

the opportunity to give a review of their experience, which is positive and/or negative, and corresponds

to a performance i ∈ I of the past. The set of past reviews is given by R.

Demand depends on the reviews. Clients for performance i ∈ I arrive according to a Poisson process

λi(R) dependent on R, starting T time units before performance i. Each seat is sold as a fare product j,

which is a combination of a seat with a price rj and conditions, such as the cancellation policy. Moreover,

customers are influenced by the fare product when writing a review. The probability that fare product

j leads to a positive review is qpj and to a negative review it is qnj . The probability of writing a negative

or positive review is independent, so a customer can write a review that has both positive and negative

2NB, Cmax can be equal to C, hence the model without overbooking is a special case of this model.

3



components with probability qpj qnj . It is also possible the client writes no review at all with probability

1− qpj − qnj − q
p
j q
n
j . It is assumed that the probabilities are well defined, i.e., qpj + qnj + qpj q

n
j ≤ 1.

Assume there is a finite number of fare products N = {1, . . . , n}. At each moment in time, for each

future performance separately that is at least T time units ahead, the theatre manager decides which

offer set S ⊂ N of fare products to offer. Depending on the offer set S displayed and the reviews R, an

arriving customer decides to either buy one of the fare products j ∈ S, with probability Pj(S), or leave

and buy nothing at all, with probability P0(S).

Reservations are allowed to be cancelled, where a potential refund depends on the cancellation conditions

of the product. Assume that cancellations happen independently from each other. The cancellation rate

γi(R) is independent of the product, but depends on the reviews. If there are xij reservations for fare

product j for performance i, then cancellations occur with rate γi(R)xij . The costs for the theatre of a

cancelled reservation of product j at time t equals cij(t). When there are more reservations than capacity

at the end of the performance, i.e., when xi > Cmax, where xi =
∑
j∈N x

i
j , a penalty q(xi) is incurred.

See Figure 1 for an overview of the model.

λi(R)
S

Control

...

Product j
rj , qpj , q

p
j

Pj(S)

...
P0(S)

γi(R)xij

Figure 1: Visualisation of the model. Per performance the arrival process is Poisson distributed with parameter
λi(R). The manager controls the offer set S. Under this offer set an arriving customer buys product j ∈ S
with probability Pj(S). With probability P0(S) the customer buys nothing. Finally, cancellations of product
j follow an exponential distribution with parameter γi(R).

2.1. Modelling Demand and Cancellations as a Function of Reviews

Demand is influenced by reviews, either positive or negative [9, 10, 18, 22, 26]. To capture this effect,

consider the following set-up. Let Qpi and Qni be the number of positive and negative reviews resulting

from performance i. Recent reviews are more relevant than older reviews. Let α ∈ (0, 1) be the discount-

ing parameter for relevance of reviews and let M be the number of past performances that are relevant.
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Define the discounted reviews Q̃pk and Q̃nk on performance k by

Q̃pk :=
k−1∑

i=k−M
αk−i−1Qpi , Q̃nk :=

k−1∑
i=k−M

αk−i−1Qni .

The most recent reviews of performance k − 1 are not discounted, while the relevant reviews of arrival

k −M are discounted most, by factor αM−1.

Let λ̄i, γ̄i ∈ R be the base parameter of demand and cancellations, respectively, for performance i ∈ I.

Let βλp , βλn, βγp , βγn ∈ R. Define λi(R) and γi(R) by

λi(R) := λ̄i exp
(
βλp Q̃

p
k + βλnQ̃

n
k

)
,

γi(R) := γ̄i exp
(
βγp Q̃

p
k + βγnQ̃

n
k

)
.

In accordance with literature [22] it is assumed that positive reviews have positive effect on demand

and negative reviews have a negative effect on demand, which translates to βλp > 0 and βλn < 0. For

cancellations the opposite is expected: positive reviews result in less cancellations and negative reviews

result in more cancellations, i.e., βγp < 0 and βγn > 0. In line with findings in literature [18], the

effect of negative reviews is greater than positive reviews: βλp < −βλn for demand, and βγp < −βγn for

cancellations. Furthermore, we expect the arrival rate to correspond to rankings in search results that

are heavily influenced by these reviews; the better the reviews, the better the ranking in the list. The

ranking is then presented to a user, and the arrival rate corresponds to the arrival rate at the list times

the probability of a person clicking on the item in the list corresponding to our booking process. Because

it is a well-known phenomenon in search engines that the probability of a click decays rapidly with the

position in a search-result list [7]3 The exponential function provides these intuitive features, as well as

the fact that demand cannot be negative.

Define the review ratio ρk by

ρk :=
Q̃pk

Q̃pk + Q̃nk
.

In the remainder of this paper, write ρ instead of ρk for notational convenience. Then an equivalent

3Besides user studies on a smaller scale, like the seminal paper by Joachims et al. [7], such results have been dupli-
cated by commercial parties, some of which has been made available online as well. See e.g., https://www.sistrix.com/
blog/click-probabilities-in-the-google-serps/. — a fact exploited in learning-to-rank algorithms for search engine
optimisation [5] — we want to have a function that expresses this decay.
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formulation for λi(R) and γi(R) is

λi(R) := λ̄i exp
(
β̃λp ρ+ β̃λn(1− ρ)

)
,

γi(R) := γ̄i exp
(
β̃γpρ+ β̃γn(1− ρ)

)
,

where β̃λp = βλp (Q̃pk + Q̃nk ), β̃λn = βλn(Q̃pk + Q̃nk ), β̃γp = βλp (Q̃pk + Q̃nk ), and β̃γn = βγn(Q̃pk + Q̃nk ).

2.2. Running Example

To illustrate the model, consider the following running example. To capture the effects of reviews under

different circumstances, four instances are considered by adjusting the review probabilities and the review

parameters of the demand. For both cases the effects are either large or small, leading to four scenarios:

1) large effect on both demand and review probabilities; 2) large effect on demand and small effect on

review probabilities; 3) small effect on demand and large effect on review probabilities; 4) small effect

on both demand and review probabilities.

Part of the parameters that are used are based on the example used in the numerical results section of

[17] and [19]. Let n = 10 be the number of products sold with corresponding price vector

r = (240, 220, 190, 160, 120, 112, 96, 80, 74, 70).

Overbooking is allowed up to 20% of the total capacity C = 200. Time is discretised to T = 1000. The

demand, cancellation rate, and purchase probabilities are independent from the time period t. The base

demand per time unit is equal to λ̄i = 0.2, for all performances i ∈ I. The cancellation rate is assumed

to be γ = 0.0004. Furthermore, define (βλp , βλn) = (1,−1.5), i.e., a large effect on demand, in case 1) and

2); and (βλp , βλn) = (0.9,−1), i.e., a small effect on demand, in case 3) and 4). The review probabilities

are presented in Table 1 below. A difference is made between a reservation that is overbooked and one

that is not. The difference is independent of the product, such that it can be incorporated in a similar

way that overbooking costs are incurred. The values of the attributes are motivated by the findings of

[27].

In this example, the purchase probabilities are modelled according to the commonly used multinomial

logit model (MNL), where the sole attribute is price. The results of this paper are more general, and

the MNL model is only used as an illustration. Utility plays a crucial role in the MNL model [2]. Let

uj = βrj be the mean utility of product j, where β ∈ R is the corresponding weight; and let u0 be the
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Large effect (cases 1 and 3) Small effect (cases 2 and 4)
No overbooking Overbooking No overbooking Overbooking

Product j qpj qnj qpj qnj qpj qnj qpj qnj
1 0.160 0.120 0.140 0.140 0.130 0.098 0.110 0.118
2 0.130 0.160 0.110 0.180 0.090 0.144 0.070 0.164
3 0.210 0.095 0.190 0.115 0.155 0.088 0.135 0.108
4 0.240 0.080 0.220 0.100 0.170 0.082 0.150 0.102
5 0.230 0.110 0.210 0.130 0.140 0.124 0.120 0.144
6 0.288 0.056 0.268 0.076 0.194 0.072 0.174 0.092
7 0.304 0.048 0.284 0.068 0.202 0.069 0.182 0.089
8 0.270 0.090 0.250 0.110 0.160 0.116 0.140 0.136
9 0.326 0.037 0.306 0.057 0.213 0.065 0.193 0.085

10 0.280 0.085 0.260 0.105 0.165 0.114 0.145 0.134

Table 1: Review probabilities for both large and small effect. In case of overbooking the probabilities differ.

no-purchase utility. The purchase probabilities are then given by

Pj(S) =


euj∑

i∈S e
ui + eu0

if j ∈ S,

0 otherwise,

for all j ∈ N . Assume there are two types of customers: high price-sensitive and low price-sensitive.

High price-sensitive customers have parameter βH = −0.005, while low price-sensitive customers have

parameter βL = −0.0015.

3. A Tractable Model

This section formulates the optimisation problem of maximising revenue in the long run by taking into

account the reviews. First, computational issues related to the size of the problem are discussed. Second,

after concluding that the full problem is intractable, a model that approximates the large problem by

breaking it down to a series of subsequently smaller problems is proposed. Within this (infinite) series,

the proposed solutions are those that lead to stable review sets. Such solutions are referred to as target

review strategies. On the level of a smaller problem, the review sets must be stable for a target review

strategy, for two objectives: positive reviews, and negative reviews. These objectives supplement the

(immediate) revenue objective. A dynamic programming formulation is given to find the resulting three-

dimensional value function. In the long run, the review scores influence the long-term revenue. However,

it is not clear at the level of a smaller problem how the review scores translate to long-term effects

on the revenue. Therefore, in this section the focus lays on a three-objective model that incorporates

the different trade-offs between these objectives. In Section 4 the computational method to find target

review strategies is discussed.
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3.1. Computational Issues

Suppose that the sales manager needs to optimise revenue for multiple shows or performances. Then

the creation of new reviews after a show influences the purchasing behaviour of customers in the future.

Moreover, the reviews may be updated during the booking horizon of another performance. Hence,

strategies for a particular performance need to take into account the strategies of other performances.

To illustrate this, consider the following example, with only three performances with a booking horizon

of three days. Only the reviews from the last performance are used, i.e., M = 1. Denote Sit as the offer

set that is offered t days beforehand for performance i. The offer sets of the first performance are not

influenced by any previous decisions, as well as the first two offer sets of performance 2 and the first of

performance 3. However, after the first performance, reviews are updated. The number of positive and

negative reviews depends on offer sets S1
1 , S1

2 , and S1
3 . Therefore, the decision which offer set S2

1 to use

on the last day before performance 2 depends on all offer sets of performance 1. Note that S3
2 is also

dependent on all offer sets of performance 1. Furthermore, after performance 2 the reviews are updated,

such that S3
1 depends on all offer sets of arrival 2, and hence also on all offer sets of performance 1. See

Figure 2 for an overview of this example.

review ratio ρ 0.5 0.5 0.5 0.6 0.6 0.6

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5

performance 3 S3
3 S3

2 S3
1

performance 2 S2
3 S2

2 S2
1 ∗

performance 1 S1
3 S1

2 S1
1 ∗

Figure 2: Visualisation of example with M = 1, K = 0, and T = 3 over a five day period. A star ∗ denotes
the end of a performance and the update of the reviews.

Let Ri be the revenue that results from performance i and denote by Si = {SiT , . . . , Si1} the strategy of

performance i. Then Ri is a function of the strategies of all performances up to day i: Ri
(
S1, . . . , Si

)
.

The objective φI(S) to maximise the finite horizon problem, with I ∈ N the horizon length, is therefore

given by

φI(S) =
I∑
i=1

Ri
(
S1, . . . , Si

)
,
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while the a-discounted infinite horizon objective function φ∞(S) is given by

φ∞(S) =
∞∑
i=1

ai−1Ri
(
S1, . . . , Si

)
.

At every moment in time products for up to T performances are in consideration to be for sale. Therefore,

the state space for these T parallel processes has to be taken into account when solving the problem.

Just using the Cartesian product of the T processes is not enough. Namely, this leads to a system that

does not have the Markov property, because to make a decision it is necessary to take the review ratio

ρ into account. One option is to include ρ in the state space as a real number. However, this leads to

a continuous state-space, yielding an intractable problem. An option with finite state space is to keep

track of the strategies of all past performances that are necessary for calculating ρ. This model has the

Markov property. However, for both the finite horizon and the discounted infinite horizon problem the

action space as well as the state space are still too large: the action space has size NT and the state

space has size up to N I for the finite horizon, and converges to an infinite state space for the infinite

horizon problem. Therefore, finding an optimal solution in the set of all feasible solutions is intractable

because of the curse of dimensionality.

3.2. Target Review Strategies

Motivated by these deliberations, consider the set of target review strategies, which consists of strategies

that keep the expected review ratio ρ constant and equal to a target review ratio ρ∗. The theatre can

select ρ∗ beforehand, and then maximise revenues under the condition that ρ = ρ∗ by deciding which

products Si to offer. What value of ρ∗ the theatre should choose, the one that is most profitable, will be

derived in the remainder of this paper.

When the target review ratio is achieved, i.e., when ρ = ρ∗, and remains fixed (in expectation), it

is clear beforehand that the expected review ratios ρ at all time periods will be equal to ρ∗ for each

performance. Also, the long-term revenue is no longer influenced by changing review ratios; Ri solely

depends on Si. Therefore, each target review strategy can be solved separately and the problem can be

solved per target review ratio. In such cases, the long term revenue is equal to the number of times a

single-performance dynamics problem is executed, times the revenue attained in this single-performance

dynamics problem, given the fixed target review ratio. Such a single-performance dynamics problem is

modelled as a multi-objective Markov decision process and is tractable.

However, before the system reaches ρ∗, it must be show that ρ∗ can in fact be reached. In order to do so,

the process of Figure 3 is followed. An initial MOMDP is constructed on the basis of initial review scores,

i.e., the parameters for demand and review probabilities are calculated from the past reviews. Then,
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parameterised
MOMDP

CCS
mixture
policy

OLS+
SDP

target
rating

update review scoresinitial
review
scores

Figure 3: The process of finding a target review policy. Starting from an initial parameterised MOMDP, a
CCS is identified, from which the mixture policy with the intended target review ratio is chosen, of which the
output in terms of positive and negative review scores are used reparameterise the MOMDP. This process
repeats until the parameters of the MOMDP converge.

a convex coverage set, which is formally defined in Section 4.1, is computed, from which a stochastic

mixture policy can be constructed that optimises the short-term revenue while making the review scores

converge to ρ∗. Executing this stochastic mixture policy leads to new review scores. With these new

review scores, the process is restarted until the parameters of the MOMDP converge. After that, the

maximal revenue for the target review ratio is determined, as the value of the target review strategy.

To illustrate the target review strategies in the successive model, consider the example from earlier in

this section. Suppose the review ratio on day 0 is 0.5 and the target review ratio is 0.6. Then the review

ratios on days 1 to 5 equal 0.5, 0.5, 0.5, 0.6, and 0.6, respectively. All performances are then separately

solved and revenue is optimised to target review ratio 0.6.

In the remainder of this section, a method is developed that optimises revenue to a target review ratio.

3.3. One Performance Dynamics

The one performance problem can be modelled as a finite-horizon continuous-time multi-objective Markov

decision process over T time units. Define the state space by

X := {0, . . . , Cmax},

where x ∈ X represents the number of reservations. The action space A at each time step is the set of

all possible offer sets S ⊂ N .

To solve the problem, time is discretised and divided into T time periods, where the length of the intervals

is such that the probability that more than one event occurs is very small (following [17]). To formulate

the transition probabilities, it is assumed (following [17]) that only one event occurs per time period,

where an event is either an arrival, a cancellation, or neither arrival nor cancellation. Denote with λ the

probability that a customer arrives in a time period; and γx the probability that a product is cancelled

in state x. The probability that no purchase occurs in a time period equals the sum of the probability
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that neither an arrival and nor a cancellation occurs, and the probability that an arrival occurs but the

arriving customer makes no purchase. This is equal to

(1− λ− γx) + λP0(S) = 1− λ
∑
j∈S

Pj(S)− γx.

In each time period the decision needs to be made which set S to offer. Note that time has to be scaled

such that λ+ γC ≤ 1 for the probabilities to be well defined. The transition probabilities from a given

state 0 < x < Cmax, are thus:

P (x′ = x+ 1|x, S) = λ
∑
j∈S

Pj(S),

P (x′ = x− 1|x, S) = γx,

P (x′ = x|x, S) = 1− λ
∑
j∈S

Pj(S)− γx,

and 0 otherwise. When x = Cmax it is not allowed to offer any fare products, and the only possible

transitions are due to cancellations.

Now define the reward function R : X × A → R3 as follows. Let R1(x, S) be the expected immediate

revenue reward; R2(x, S) the expected good review reward; and R3(x, S) the expected bad review reward,

in a state x for an action S. Define r1j = rj , r2j = qpj , and r3j = −qnj for all j ∈ N . Define c1j(t) = cj(t),

c2j(t) = qpj , and c3j(t) = −qnj for all j ∈ N and for all t. The expected costs that follow from cancellations

can be added to the immediate rewards when a product is purchased, since neither the booking system nor

the manager has control over the cancellations of current reservations (see [17] for a detailed description

of this derivation). By doing so, it is not necessary to account for the costs of cancellations of a product

purchased at a time step later in the decision process, allowing the state x to be Markov.

The expected cancellation costs for objective o ∈ {1, 2, 3} that follow from selling product j in time step

t is equal to

∆Hoj(t) =


γcoj(t) + (1− γ)∆Hoj(t− 1) if t > 1,

0 if t = 1,

The expected reward that includes the expected costs of cancellations is therefore given by roj −∆Hoj(t),

for all j ∈ N , for o = 1, 2, 3, and for all t. The immediate reward for a cancellation4, as well as nothing

4The immediate reward for cancellations is 0, because the expected costs are already accounted for in the purchase
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happening is 0.

3.4. Policies and Value Vectors

A manager can interact with the model by executing a policy with a corresponding value. In the

multi-objective rather than single-objective setting, stochastic policies can Pareto dominate deterministic

polices [21, 23]. Therefore, define the policy space Π, as all possible mappings of states, time steps, and

actions (i.e., fare-products) to a probability of taking that action: π : X × {0, . . . , T} × A → [0, 1]. For

each state and time step, the probabilities for each action should be positive and should sum to 1.

A given policy, π(x, t, S), induces a probability distributions over execution trajectories (xT , ST , rT , ...

x1, S1, r1, x0), where rt is the reward vector corresponding to time step t. Each such a trajectory has

an associated vector-valued return, i.e., the sum of the reward vectors in the trajectory. The value of a

policy is its expected return. Because the returns are additive [14], the value of a policy π for a given

time step and state, Vπ
t (x) can be expressed recursively with a Bellman equation [1] in vector form, or,

as separate Bellman equations per objective:

V πo,t(x) =
∑
S⊂N

π(x, t, S)
{
λ
∑
j∈S

Pj(S)
[
roj −∆Hoj(t) + V πo,t−1(x+ 1)

]
+ γxV πo,t−1(x− 1)

+

1− λ
∑
j∈S

Pj(S)− γx

V πo,t−1(x)
}
.

(1)

A special kind of policy is the deterministic policy, i.e., policies in which one action per state and time

step has probability 1. A deterministic policy π(x, t) may be seen as a mapping: π : X×{0, . . . , T} → A.

In this case, the marginalisation over actions drops out of the Bellman equation:

V πo,t(x) =λ
∑
j∈S

Pj(π(x, t))
[
roj −∆Hoj(t) + V πo,t−1(x+ 1)

]
+ γxV πo,t−1(x− 1)

+

1− λ
∑
j∈S

Pj(π(x, t))− γx

V πo,t−1(x).

(2)

event rewards [17].
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3.5. Scalarisation and Scalarised Solution Methods

There is typically no single policy that is best with respect to all objectives, because there typically are

different policies that yield different trade-offs between the objectives. In the multi-objective decision

making literature, a certain trade-off is typically preferred on the basis of the partially unknown pref-

erences of a user, i.e., a human decision maker [12]. These preferences can be expressed in terms of a

scalarisation function, or utility function, f , which collapses the value vector of a policy, i.e., the vector

of values of a policy in each objective, to a scalar:

V πw = f(Vπ,w), (3)

where Vπ is the value vector of a policy π, and w is a vector parametrising f . Typically, only limited

information is available about the function f . Therefore, the solution to a multi-objective decision

problem is a set of value vectors and associated policies that cover all possible f and w. The human

decision maker can choose her preferred policy from this set.

In our problem, there is no human decision maker. Instead, the function f represents the long-term

revenue, as a result of optimally balancing the review scores and the immediate revenue. To determine

the optimal long-term revenue exactly however, the intractable problem discussed at the beginning of

this section has to be solved. Gladly, it is not necessary to do that at this stage. Instead, assume

that f is unknown but with some known constraints. This results in a tractable model that describes

one-day-arrival dynamics.

In the problem at hand, i.e., the one-day-arrival dynamics multi-objective Markov decision process

(MOMDP) model, the exact shape of f and w are unknown. Therefore, the aim is to find a set of

all possibly optimal solutions for the MOMDP, i.e., a set that covers all possible f and w that fit the

known constraints about f and w [14]:

Definition 3.1. For a multi-objective Markov decision processm and a family of scalarisation

functions F , a set of policies CS is a coverage set if for every w, it contains a policy that

has the maximal scalarised value, i.e., if:

(∀f∈F ,w)(∃π ∈ CS)
(
∀(π′ ∈ Πm) V πw ≥ V π

′

w

)
∧ (∀π ∈ CS)(∃f∈F ,w)

(
∀(π′ ∈ Πm) V πw ≥ V π

′

w

)
,

(4)

where Πm is the set of all valid policies for m.
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Typically, the aim is to make the coverage set as small as possible; the smaller the CS, the easier for

the user to compare the alternatives. However, even if only undominated policies are considered, i.e.,

policies that are optimal for at least one f and w, the CS may not be unique; multiple policies may

cover the same subset of possible f and w. In the next section, the CS is specified further, by imposing

constraints on f that follow from the available information about how the value vectors attainable in

the MOMDP model affect the long-term revenue. After that, the coverage set for the one-day-arrival

dynamics MOMDP is used to determine approximately optimal strategies for the full problem.

4. Computing Coverage Sets for Single-performance Planning

In this section, coverage sets for one-day-arrival dynamics MOMDP planning are discussed. Firstly, the

appropriate CS for is derived from the available information about how immediate revenue and reviews

affect the long-term revenue. Secondly, an algorithm that computes this CS is discussed. Finally, a way

to employ the CS to improve long-term revenue is proposed.

4.1. Coverage Sets

Recall that the long-term revenue can be expressed in terms of a scalarisation function f(Vπ,w). Which

undominated policies need to be contained in the coverage set depends on what is known about f and

w. Sometimes it is known beforehand that f has a particular shape. For example, f might be linear

[24].

Definition 4.1. A linear scalarisation function is the inner product of a weight vector w

and a value vector Vπ

V πw = w ·Vπ. (5)

Each element of w is greater than or equal to 0, and specifies how much one unit of value for

the corresponding objective contributes to the scalarised value.

Linear scalarisation functions are both common and intuitive. The most common situation in which

linear scalarisation applies is when the value vectors can be translated into monetary value. For example,
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consider a task in which objective corresponds to quantities of various resources that need to be bought or

sold on a market. For revenue management this might therefore be the most intuitive way of scalarising.

However, linearity is a strong assumption, that cannot be made in this context.

In fact, only the following information about f can safely be assumed:

− immediate revenue always contributes positively to the long-term revenue,

− positive reviews contribute positively to the long-term revenue, and

− negative reviews always contribute negatively to the long-term revenue.

When the negative review objective is redefined as −1 times the number of negative reviews, an f is

obtained that is monotonically increasing in all objectives.

Definition 4.2. A scalarisation function f is monotonically increasing if:

∀o, V πo ≥ V π
′

o ⇒ ∀w, f(Vπ,w) ≥ f(Vπ′ ,w), (6)

where V πo denotes the value of policy π in the o-th objective.

The assumption that is f is monotonically increasing guarantees that if more of one objective is obtained

while not losing anything in another objective, the utility cannot go down. Note that linear scalarisa-

tion functions (with non-zero positive weights) are included in the family of monotonically increasing

functions. Monotonicity is therefore a less strict assumption than linearity.

When an optimal solution is needed with respect to all linear f , a coverage set is needed that contains an

optimal solution for every possible weight vector w in Equation 5. The coverage with respect to linear

f is called a convex coverage set (CCS).

Definition 4.3. A set of policies CCS is a convex coverage set if:

∀w ∃π ∈ CCS
(
∀(π′ ∈ Πm) w ·Vπ ≥ w ·Vπ′

)
∧∀π ∈ CCS ∃w

(
w ·Vπ ≥ w ·Vπ′

)
. (7)

Without loss of generality, assume that w adheres to the simplex constraints, i.e., all elements

of w are positive and sum to one.
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The coverage set for the family of monotonically increasing functions is called a Pareto coverage set

(PCS).

Definition 4.4. A set of policies PCS is a Pareto coverage set if:

∀π′ ∈ Πm ∃(π ∈ PCS)
(

Vπ �P Vπ′
)

(8)

where �P denotes weak Pareto-dominance, i.e., Vπ �P Vπ′ ≡ ∀o V πo ≥ V π
′

o .

I.e., for every possible policy, there is a policy in the PCS, with at least equal value in all objectives.

Because monotonicity is a less strict assumption than linearity, the PCSs are typically much larger than

the CCSs. Furthermore, because of the possibly non-linearity of the scalarisation function, policies that

constitute a PCS are much harder to obtain than those that constitute a CCS. Gladly however, it is not

necessary to represent PCSs explicitly if it can be assumed that stochastic policies are allowed. This is

due to a theorem by Vamplew et al. [21] which states that for any MOMDP, a PCS of stochastic policies

can be constructed from a given CCS of deterministic policies, by taking so-called mixture policies from

policies in this CCS. A mixture policy is constructed by taking a subset of N policies from the CCS and

assigning each a probability of being executed.

The difference between the CCS and the PCS with or without stochastic policies is illustrated in Figure

4, where all the possible values of deterministic policies for a 2-objective MOMDP are denoted as points.

The axes represent the different objectives. Note that the grey points are neither in any PCS or CCS,

as they are dominated by one of the other points (i.e., there is another point with a higher value in

all objectives. The red points represent a possible CCS of deterministic policies, while the blue point

represents a point that may be, but is not necessarily, in the CCS. Note that a CCS of deterministic

policies is also a CCS for stochastic policies as there is always a deterministic policy that is optimal

for any w [6, 14]. The black point would be in a PCS if stochastic policies are not allowed as it is

not dominated by another point. However, when stochastic policies (including mixture policies) are

allowed, the PCS is represented by all the values on the red lines, on which there are policy values that

dominate the black point. To summarise, all the Pareto-optimal policy values of stochastic policies can

be constructed by mixing deterministic policies from a CCS of deterministic policies. Therefore, this
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Figure 4: (Left) A stochastic PCS can be constructed from a deterministic CCS. (Right) The scalarised value
as a function of the linear scalarisation weight.

article focuses on finding methods for finding a CCS, and construct policies with values on the PCS of

stochastic policies when necessary. Thus, define solving an MOMDP as finding a convex coverage set.

4.2. Optimistic Linear Support

In order to compute the CCS for the single arrival model, the Optimistic Linear Support (OLS) algo-

rithm [15] is used. OLS is a general framework for solving multi-objective decision problems (including

MOMDPs [13]). It takes a single-objective solver — such as dynamic programming — as a subroutine,

and produces a CCS within a finite number of calls to this subroutine. In this section, the framework is

described, and the specific implementation of OLS for multi-objective revenue management.

Because OLS computes the CCS, it can make use of linear scalarisation. Under this assumption, define the

scalarised value function V ∗CCS(w) that provides the maximal scalarised value given a linear scalarisation

weight w:

V ∗CCS(w) = max
Vπ∈CCS

w ·Vπ.

V ∗CCS(w) is a piecewise linear and convex (PWLC) function, because each value function defines a

(hyper)plane over the weight simplex, as illustrated in Figure 4 (right), and V ∗CCS(w) maximises over

these hyperplanes. That is, it consists of the convex upper surface of the lines in Figure 4 (right).

OLS builds up the CCS incrementally by solving a series of linearly scalarised instances of the MOMDP,

for different w. The optimal policy π to an instance scalarised with w maximizes V πw = w ·Vπ. When

this π is identified, Vπ is added to a partial CCS X, which converges to a CCS.

In order to select good w’s for scalarisation, OLS exploits the observation that V ∗X(w) = maxVπ∈X w·Vπ

is PWLC over the weight simplex. In particular, OLS selects only so-called corner weights that lie at the

intersections of line segments of the PWLC function V ∗X(w) that correspond to the value vectors found
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Figure 5: (Left) The scalarised value as a function of weights V ∗X(w) (bold segments) for X = {(0, 3), (3, 0)}.
There is one corner weight: (0.5, 0.5). (Right) Adding a new value vector, (2.0, 2.5), to X, thereby improving
V ∗X(w).

so far. For example, in Figure 5 on the left, V ∗X(w) is indicated with bold line segments. There are two

value vectors in X, and there is one corner weight. The maximal potential error reduction that can be

made by identifying a new value vector u(a) is at a corner weight [3]. The potential error reduction

is denoted with dashed blue vertical lines, and is at present ∆. OLS scalarises the MOMDP at this

corner weight and solves it using a single-objective solver, obtaining the optimal policy for that weight.

The multi-objective value of this policy, Vπ, improves over V ∗X(w) at that corner weight, as shown on

the right-hand side of Figure 5 indicated by the red dashed line on the right. By continuing to find

new corner weights and solving scalarised MOMDPs for corresponding to these corner weights, OLS is

guaranteed to produce an exact CCS after solving a finite number of single-objective problems. That is,

when no improvements are found at any remaining corner weights, the possible error reduction becomes

0, and a CCS is found. When there are multiple corner weights, OLS first solves the scalarised problem

with the highest possible error reduction ∆.

After solving a scalarised MOMDP, for a given w, a policy w is obtained. If a standard implementation

of dynamic programming would be used, the single-objective policy value V πw would also be obtained.

Because OLS requires Vπ however, this would mean that policy evaluation has to be used to obtain

this multi-objective value. Therefore, in this implementation, an improvement is made over standard

DP which is called scalarised dynamic programming (SDP). SDP keeps track of the multi-objective

value vectors while maximising the value for w, thereby preventing having to perform separate policy

evaluation steps.

4.3. Equilibrium Strategy

This article proposes to find target review strategies that maximise revenue in the long run. For a given

CCS with input review ratio ρ, a target review strategy π(ρ) that achieves ρ can be found as follows.

Each deterministic stationairy policy π ∈ CCS has a corresponding value vector Vπ. Hence each policy

can be represented in terms of a value vector. This leads to a three-dimensional value space CCS′ with
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revenue, positive reviews, and negative reviews as axes:

CCS′ = {Vπ |π ∈ CCS} . (9)

Consider Figure 6 below, where a sketch of CCS′ is given by the convex non-linear surface. This surface

represents all potential optimal value vectors, covering all review ratios. However, not all value vectors

need to be considered: the space CCS′ can be reduced to the value vectors Vπ ∈ CCS′ for which the

review ratio equals ρ. In order to do so, consider the hyperplane H for which the review ratio equal ρ:

H =
{
x ∈ R3

∣∣∣∣ x2

x2 − x3
= ρ

}
=
{
x ∈ R3∣∣x2(ρ− 1)− ρx3 = 0

}
.

A sketch of the hyperplane is given in Figure 6. The reduced value vector space, consisting of value

vectors in CCS′ for which the review ratio is equal to ρ, is then given by the intersection CCS′ ∩ H. In

Figure 6 the intersection CCS′ and H is empasised by the black thick line.

Figure 6: Visualisation of the set CCS′ of potentially optimal value vectors (convex non-linear surface), the
hyperplane H of value vectors for which the review ratio is equal to ρ (hyperplane cutting CCS′), and their
intersection CCS′ ∩ H, the set of all potentially optimal value vectors for which the review ratio equals ρ
(thick black line).

Hence the value vector Vπ ∈ CCS′ ∩H with optimal revenue gives the solution to the problem at hand:

π(ρ) = arg max
π∈CCS

{
V π1
∣∣Vπ ∈ CCS′ ∩H

}
.

A closer look at the solution space provides insight in the evaluation of the optimal solution π(ρ). First
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note that CCS, and therefore CCS′, is a convex set consisting of a finite number of faces. Therefore,

CCS′ ∩ H is a line in R3 consisting of a finite number of line segments, corresponding to faces of CCS′

that intersect with H. Hence π(ρ) is one of the corners of those line segments.

Now that a target review strategy π(ρ) can be found for every ρ, the goal is to find the strategy π∗, with

corresponding target review ratio ρ∗, that optimises revenue:

π(ρ∗) = arg max
π(ρ)

V
π(ρ)

1 .

Two computational challenges arise in these evaluations:

− Not all target review ratios are attainable. The CCS with input ρ can attain the review ratios

[ρ, ρ]. If ρ /∈ [ρ, ρ], then no target review strategy exists and ρ is not a feasible target review ratio.

Only feasible target review ratios need to be considered. However, it is not clear beforehand which

values of ρ are feasible.

− Optimising over all target review ratios is challenging. The set of feasible target review ratios

is continuous, and in order to find the optimal revenue corresponding to a certain target review

ratio ρ the whole procedure described in this section has to be followed. Under these deliberations

the authors propose two approaches to deal with the continuous variable ρ. The first approach

descretises the set of attainable values of ρ, denoted by P ⊂ R, |P| <∞. Then, an optimal policy

π(ρ∗) over P is used:

ρ∗ = arg max
ρ∈P

V
π(ρ)

1 . (10)

The second approach is iterative and of stochastic nature. Each iteration an arbitrary ρ is selected

from the set of feasible values for ρ, according to some distribution. If V π
∗(ρ)

1 > V
π∗(ρ′)

1 , with ρ′

the best target review ratio found so far, then update ρ′ with ρ. Continue until some stopping

criterion is hit.

Remark: Traditional RM optimisation models provide intuitive and interpretable strategies, such as

booking limits or protection levels [20]. However, such a nice structure is absent when the model becomes

more complicated, such as when cancellations and customer choice behaviour are combined [17]. The

complexity of our model goes even beyond cancellations and customer behaviour, so unfortunately a

simple booking limit or protection level structure is impossible in our case.
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5. Numerical Examples

In this section numerical results are provided of an implementation of the multi-objective revenue man-

agement model. The two main goals of these examples are 1) to show how to interpret and use the

convex coverage set; 2) to numerically validate target review strategies. Examples of realistic size are

used. All examples use the set-up of the running example introduced in Section 2.

5.1. One Instance: Policy Analysis

This example examines the results for scenario 1 from the example of Section 2, where the current review

ratio is ρ = 0.6. The resulting convex coverage set is presented in Table 2. Besides the total expected

revenue, the positive reviews, and the negative reviews, also the resulting review ratio ρ is given. The

solutions are ordered by revenue. The value space is three dimensional (revenue, positive reviews, and

negative reviews). To provide a graphical representation of the value space, consider the three faces

presented in Figures 7, 8, and 9. In each figure the convex coverage set that follows from revenue and

review ratio is also given. Moreover, Figure 10 provides a visual representation of review ratio versus

revenue.

Two observations of interest can be made from this table and accompanied figures. First, by sacrificing

revenue the review ratio can be increased, as is expected. Optimising revenue results in total expected

revenue of 27098.09 and review ratio of 0.57, while optimising the review ratio yields total expected

revenue of only 7493.76, a 72% decline, and review ratio of 0.9, a 56% increase. Sacrificing revenue does

not necessarily lead to a higher review ratio though. For example, the optimal solution corresponding

to the sixth row in Table 2 leads to an expected revenue of 15137.33 and review ratio 0.84. The fifth

row shows that by sacrificing revenue to 14252.8 not only the number of positive reviews increase, but

also the number of negative reviews increase. In this case it leads to a decrease in review ratio to 0.81.

Therefore, the procedure in Section 3 needs to be used to find a target review strategy. In this case,

The target review strategy of ρ∗ = 0.6 has optimal revenue of 27027.18, a 3.18% increase with respect

to solely optimising revenue (at ρ = 0.57).

A second observation is that the positive reviews tend to increase as revenue decreases, and negative

reviews tend to decrease as revenue decreases. This is in concordance with the set-up of the scenarios,

where higher prices lead to less positive and more negative reviews. It can also be seen in Figures 7 and 8.

However, there is no strict increase or decrease. This can be explained by the trade-off between positive

and negative reviews with respect to revenue. There is however a difference in behaviour between positive

and negative reviews. At first positive reviews tend to increase as revenue decreases. Policies are selected

that give slightly less revenue, but provide more positive reviews and less negative reviews. However, at
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Revenue Positive reviews Negative reviews Rating ρ
0 0 0 -

7493.76 33.01 3.75 0.90
12513.99 42.88 9.28 0.82
12595.63 41.42 6.30 0.87
14252.80 42.48 9.77 0.81
15137.33 41.09 7.57 0.84
16021.48 41.67 10.38 0.80
17983.01 40.40 11.16 0.78
18693.24 39.78 10.61 0.79
19985.47 38.61 9.99 0.79
21719.66 36.79 11.74 0.76
23528.79 33.55 12.81 0.72
24686.86 26.26 12.34 0.68
25194.50 29.93 13.87 0.68
26943.83 25.33 15.07 0.63
27098.09 21.11 15.62 0.57

Table 2: Convex coverage set for ρ = 0.6.

some point revenue can only be increased more if at times no products are offered, to the point that no

products are offered any more. This leads to the zero-solution: if no products are offered, no revenue is

earned and no reviews are given. This in fact is an optimal policy when only negative reviews are the

objective. A side-effect is that at some point, when revenue decreases, also positive reviews decrease,

because of lack of offer. For example, consider the solution with 12513.99 revenue, 42.88 positive reviews,

and 9.28 negative reviews; compared to revenue of 7493.76, 33.01 positive reviews, and 3.75 negative

reviews. Note that the reviews score does increase from 0.82 to 0.90.

22



Figure 7: Convex coverage set plot of revenue
and positive reviews.

Figure 8: Convex coverage set plot of revenue
and negative reviews.

Figure 9: Convex coverage set plot of positive
and negative reviews.

Figure 10: Plot of revenue and review ratio re-
sulting from CCS.

23



5.2. Equilibria

An important application of the revenue-review trade-off model is to make decisions now that positively

influence future purchase behaviour and revenues. By sacrificing revenue now in order to get better

reviews, future revenues can be increased substantially. One way to do this is to consider the target

review strategies described in Section 3 (other approaches that are both tractable and indicate how

long-term revenue can be increased are not known to the authors). Each of the four scenarios of the

example of Section 2 is considered. The optimal revenue that results from the target review ratio can

be calculated using stochastic mixture policies on the convex coverage set of revenue and reviews, as

is shown in Section 3. For example, the target review strategy for scenario 1 with ρ = 0.6 yields an

expected revenue of 27027.18. Just optimising revenue, on the other hand, leads to a target review policy

that yields an expected revenue of 26194.23. By observing the policy space in Table 2, an initial revenue

loss of 0.26% is incurred (from 27098.09 if solely revenue is optimised). However, on the long term this

leads to a revenue increase of 3.18%.

The question now is what target review ratio will lead to maximal revenue in the long term. Therefore

the following experiment is conducted. For all four scenarios the total expected revenue corresponding

to the target review policy is evaluated for a range of target review ratios. For visual convenience, losses

for some higher target reviews are omitted. The results are presented in Figure 11. Observe that the

curves are not smooth, nor indeed is there a reason why they should be.

Figure 11: Revenues corresponding to target review policies.

The four scenarios give different results, though the prevailing observation is that there is a lot to gain
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by optimising to target review ratio instead of solely optimising revenue. Scenario 1, where both the

effect of review ratio on purchases and of purchases on review ratio are large, shows a structural increase

in revenue of 11% when an optimal target review ratio is selected. When demand effect is small, but

the effect of review probabilities high, in scenario 2, then optimising to target review ratio leads to a 6%

structural increase in revenue. The other scenarios 3 and 4, with the effect of review probabilities low,

show a decent increase in revenue of about 2-3%.

Research in [25] found that a 10% increase in rating increases online bookings by more than 5%. In terms

of revenue, our example gives similar results. Scenario 1 induces a revenue increase of 10.66% with an

increase in review ratio of 20.69%. The increase in revenue is higher that in the results by [25], but so is

the increase in review ratio. In scenario 2 a similar observation can be made: 5.73% increase in revenue

and 11.11% increase in review ratio. Scenario 3 and 4, however, show slightly poorer results. Scenario 3

yields an increase of 3.36% in revenue with 8.62% increase in review ratio and scenario 4 an increase of

2.15% in revenue and 7.41% in review ratio. This can be explained by the low impact of review ratio on

demand in these scenarios.

5.3.

6. Concluding Remarks

In this article a novel revenue management model is introduced that captures the trade-off between

revenue and reviews. Revenue management strategies influence the perception of customers, which

results in a changing review ratio. On the other hand, review ratio influences buying behaviour. The

formulated model captures the long-term effect of optimising revenue according to a target review ratio.

An innovative solution method to approach a problem of such complexity is introduced to optimise

revenue in the long run. The methodology builds on recent developments in multi-objective Markov

decision process theory, and contributes to this body of literature. Because the policy space is restricted

to policies where revenue is optimised such that the target review ratio remains constant, the full problem

can be reduced to a series of multi-objective Markov decision problems.

The numerical studies show how to interpret the solution space, the convex coverage set, or a single

multi-objective MDP in the series. Moreover, results of the target review strategies of the successive

model show that revenue improvements of up to 11% are achievable if reviews are taken into account in

the optimisation process, instead of the sole objective of revenue. All results, featuring different scenarios,

suggest revenue increases of at least 2%. In practical terms for theatre, this leads to a significant increase

in revenue that can reach into the millions annually.
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The results of this article have several implications that lead to topics for further research. First, the

model can be used to identify the effect of improving facilities of the theatre to revenue and review ratios.

Second, the model can be extended to a network setting for applications with such structure, like hotels.

However, this is not straightforward, and it increases the dimensionality of the problem to the extend

that is intractable.
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