
Client Time Series Model: a Multi-Target Recommender System
based on Temporally-Masked Encoders
Dirk D. Sierag

dirk.sierag@stitchfix.com
Stitch Fix, Inc, Data Science & Machine Learning

Department
San Francisco, CA, USA

Kevin Zielnicki
kzielnicki@stitchfix.com

Stitch Fix, Inc, Data Science & Machine Learning
Department

San Francisco, CA, USA

ABSTRACT
Stitch Fix, an online personal shopping and styling service, creates
a personalized shopping experience to meet any purchase occasion
across multiple platforms. For example, a client who wants more
one-on-one support in shopping for an outfit or look can request
a stylist to curate a ‘Fix’, an assortment of 5 items; or they can
browse their own personalized shop and make direct purchases in
our ‘Freestyle’ experience. We know that personal style changes
and evolves over time, so in order to provide the client with the
most personalized and dynamic experience across platforms, it is
important to recommend items based on our holistic and real-time
understanding of their style across all of our platforms. This work
introduces the Client Time Series Model (CTSM), a scalable and
efficient recommender system based on Temporally-Masked En-
coders (TME) that learns one client embedding across all platforms,
yet is able to provide distinctive recommendations depending on
the platform. An A/B test showed that our model outperformed the
baseline model by 5.8% in terms of expected revenue.

CCS CONCEPTS
•Recommender Systems; •Multi-task learning; •Neural net-
works;

KEYWORDS
industry application, self-attention
ACM Reference Format:
Dirk D. Sierag and Kevin Zielnicki. 2022. Client Time Series Model: a Multi-
Target Recommender System based on Temporally-Masked Encoders. In
Sixteenth ACM Conference on Recommender Systems (RecSys ’22), September
18–23, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3523227.3547397

1 INTRODUCTION
At Stitch Fix, our goal is to make it easier for people to find the
things they love.We do this by creating highly personalized, curated
experiences across a range of purchase occasions – whether they
want the one-on-one support of a stylist or have a more specific
item in mind that they want to discover without getting stuck in a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’22, September 18–23, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9278-5/22/09.
https://doi.org/10.1145/3523227.3547397

cycle of endless scrolling and filtering. The primary channel that
clients begin to interact with our ecosystem is through the Fix. With
the Fix, a stylist curates an assortment of five items that reflect a
client’s style and fit using information they’ve shared about their fit,
size and budget preferences in their profile, as well as any context
they’ve shared in their note requesting a Fix. We send the curated
assortment directly to our client, so they can try out the clothes
in the comfort of their own home. They keep what they like, and
send back anything they don’t want to keep along with feedback
on why those items didn’t work. We recently introduced another
curated shopping experience, Freestyle, where our clients can shop
directly without the support of a stylist. Clients can discover items
or outfits that are curated in their own personal shops. We create
these personal shops based on their style profile, style preferences,
and past interactions with our platforms. We also have a gamified
experience in our ecosystem called Style Shuffle, where our clients
can share feedback with us on their personal style in real-time. In
Style Shuffle, we’ll show a random item to the client and ask them
if they would wear the item. The client has the option to give it a
thumbs up or thumbs down.

Across all of our shopping experiences, Stitch Fix aims to display
items that match the clients style and preferences to make finding
what they will like seamless and enjoyable. For Fix, we’re providing
recommendations to a stylist who is ultimately making the final
decision onwhat to send to the client [2]. Sowe’re showing them the
highest matches to their personal style, but the stylist has context
of request notes and could push someone out of their comfort zone.
For Freestyle, we don’t have the stylists curating the final results –
we are curating items and ranking them within certain categories
or shops based on the client’s profile and past interactions. In all
cases, the best client experience results from having each platform
be informed by interactions on all platforms.

Historically, we have developed specialized recommender sys-
tems for each platform, because domain-agnostic models did not
perform well. Building and training a separate model for each plat-
form or domain results in increased complexity, especially when
signals have to be shared across platforms in real-time [4]. See
Figure 1 for an illustration of the model complexity. Moreover, by
expanding into different business segments and regions, our code-
base and number of models increased significantly. As we grow our
business and expand our platforms and client base, the development
and maintenance burden of our codebase and models would ever
increase. To this extent, we have developed a model that tackles
these problems: the Client Time Series Model (CTSM).

https://orcid.org/0000-0001-8828-0155
https://doi.org/10.1145/3523227.3547397
https://doi.org/10.1145/3523227.3547397
https://doi.org/10.1145/3523227.3547397


RecSys ’22, September 18–23, 2022, Seattle, WA, USA Dirk D. Sierag and Kevin Zielnicki

Figure 1: Many-to-many coupling explodes maintenance
and complexity.

Figure 2: A client embedding can act as a decoupling inter-
mediary.

2 MODEL
The Client Time Series Model estimates one client embedding that
serves all domains. This leads to a less complex architecture, com-
pared to a traditional architecture (see Figure 2). In the Client Time
Series Model, every client interaction is considered a timestamped
event. For example, we do not consider a client’s “waist size” to
be a static feature. Rather, we consider the event when the client
entered their waist size. After all, the client state and preferences
are not static, but may evolve over time: in our example, at one
moment in time the client waist size might have been 42, but at
another moment in time it might change to 41. Using the most
recent value of 41 as a feature for interactions that happened at the
time it was still 42 would be incorrect. Another example of an event
is an interaction with an item: at one moment in time a client might
like a certain style of shoes, but as style preferences evolve, the
client might prefer a different style of shoes at another moment in
time. Both cases demonstrate that a client state evolves over time,
and CTSM captures these dynamics.

A consequence is that it is time-safe by design: by considering
events chronologically, we avoid the pitfall that past observations
are informed by future events, which could typically be a problem
when using tabular machine learning models.

Figure 3: Example sequence of client interaction events.

2.1 Temporally-Masked Encoder with Gated
Updates

A key component of CTSM is the Temporally-Masked Encoder
(TME) with gated updates. The TME is similar to a transformer
[3], but is faster and easier to train. Moreover, in our backtesting
results TME performed better than a traditional transformer. The
main difference is that TME computes weights only once for the
whole sequence rather than separately for each input as a function
of queries and keys. See Figure 4 for an overview of TME.

Figure 4: Temporally Masked Encoder (TME).

In the example in Figure 4, the embedding dimension is equal to
64. The input to the masked encoder is a batch of event embeddings
for one client, where in the example the batch size is 100. The event
embeddings are concatenated with the hidden client embedding,
which fans out and is reduced to a smaller dimension using a 2-layer
feedforward network. In the example dimension 65: 64 to represent
the transformed embeddings and 1 dimension contains the weights
to be applied to the mask. This triangular mask masks any events
that happen prior to any observation. This can be done so because
the events are ordered by timestamp. The final part of the masked
encoder returns a weighted masked average.

The output embeddings of the TME are passed through a gated
update, which consists of GRUs [1] that are updated in parallel
instead of sequentially. This speeds up time and shows empirically
proper results. See Figure 5 for an overview.

Figure 5: Temporally Masked Encoder wtih Gated Updates.



Client Time Series Model RecSys ’22, September 18–23, 2022, Seattle, WA, USA

2.2 Instant reflection of updates to rankings
A key aspect to improve the client experience is to reflect any
client’s interactionwith the platforms instantly in the recommended
items. For example, if a client updates their profile, the recommen-
dations on Freestyle should immediately reflect this. Moreover, if a
client plays Style Shuffle and subsequently orders a Fix, we want
the items that are surfaced to the stylist immediately reflect the
client’s likes and dislikes. In short, any update on the client profile
or client interactions should be instantly reflected in all platforms.
CTSM is able to efficiently deal with updates across platforms: At
inference time, the only features that have to be passed to the model
are all client events that have happened since training, since ev-
erything else is reflected in the client embeddings already. Since
CTSM doesn’t require complex feature engineering or similar, the
raw (or almost raw) features can instantly be directed to CTSM as
client event updates such that any recommendations reflect those
recent events.

2.3 Modeling events
There are two main flavors of events: Updates and Targets.

2.3.1 Updates. Updates are observations of some piece of informa-
tion that changes our knowledge about the client state. For example,
a Fix checkout or a profile change is considered an update. Updates
have four components: source, timestamp, client identifier, and pay-
load. The source identifies what type of update we are dealing with.
The timestamp identifies when the event took place. The client
identifier points to the client to which the update refers. The pay-
load contains any features or information and may differ per source.
However, all updates from the same context have the same payload
structure. For example, the payload for a Fix checkout might con-
tain an item embedding and an outcome, signifying whether the
client purchased the item or not. Each update is then transformed
into a fixed dimensional embedding, which is used as an input to
the TME. See Figure 6 for an illustration of this process.

2.3.2 Targets. Targets are outcomes of interest to estimate as a
function of the client state. An example of a target is the probability
that a client purchases an item conditional to the item being sent to
the client in a Fix. Each target has an associated loss function, such
as binary cross entropy. Targets may correspond to updates, but
this is not required. For example, a Fix purchase may be included as
an Update as well as a Target. Targets contain the same components
as updates, namely source, timestamp, client identifier, and payload,
but additionally requires an associated loss function that measures
predictions against outcomes from the payload. In our fix checkout
example from the updates, the loss function is measured against
the ‘outcome’ inside the payload.

To make a target prediction, the most recent client embedding
prior to the target timestamp is fetched, as well as the item embed-
ding. The client vector is then transformed to the item embedding
space using a 2-layer feed-forward neural network. The dot product
of the two gives us the predicted logits, which can be transformed
into the predicted probability by applying the expit function. See
Figure 7 for an illustration of this process.

Figure 6: Illustration of processing updates.

Figure 7: Illustration of target prediction.

3 RESULTS
We have deployed CTSM into our production environment and ran
an A/B test in Freestyle. The test showed a 5.8% lift in revenues and
a 4.1% lift in order re-engagement, when using CTSM compared to
our baseline model.



RecSys ’22, September 18–23, 2022, Seattle, WA, USA Dirk D. Sierag and Kevin Zielnicki

REFERENCES
[1] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

2014. On the Properties of Neural Machine Translation: Encoder–Decoder Ap-
proaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation. 103–111.

[2] Eric Colson. 2013. Using Human and Machine Processing in Recommendation
Systems. In Proceedings of the AAAI Conference on Human Computation and Crowd-
sourcing, Vol. 1. 16–17.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.
Advances in neural information processing systems 30 (2017).

[4] Ruobing Xie, Yalong Wang, Rui Wang, Yuanfu Lu, Yuanhang Zou, Feng Xia, and
Leyu Lin. 2022. Long short-term temporal meta-learning in online recommenda-
tion. In Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining. 1168–1176.


	Abstract
	1 Introduction
	2 Model
	2.1 Temporally-Masked Encoder with Gated Updates
	2.2 Instant reflection of updates to rankings
	2.3 Modeling events

	3 Results
	References

